

Deployment Manual
Computer Vision for Object Detection in Medicine
Team 6 - GOSH Drive

Page Index

Training a Model 3

Web API 3

Client Application 6

Appendix ​8

Training a Model
Our application works with any tensorflow inference graph model. Therefore, we will not
include the exact method in which we used to make our model as it has become redundant
and the scripts we used have been moved to the legacy section. To make our model we
used the Google TensorFlow Object Detection API and trained our own model using the
faster_rcnn model configuration
(​https://github.com/tensorflow/models/tree/master/research/object_detection​). All the details
in training your own model can be found there in the their git repository.

If you want to use our own pre trained model that we used for our project, it can be found in
our sysEngWebAPI git repository (​https://github.com/gohchanb/sysEngWebAPI​) under
object_detection/instruments_graph. ​The graph has been trained using around 1500 images
of 3 different medical instruments categories (forceps_straight, forceps_curved and
tweezers). For each instrument category we only used 1 specific instrument from which we
took the images. The instruments can be found at GOSH DRIVE. If you decided to train your
own model, the model currently in the ​object_detection/instruments_graph​ folder can be
replaced and the Web API will still run as intended using the new graph.

Web API
All the files needed for the WebAPI are found in the sysEngWebAPI git repository
(​https://github.com/gohchanb/sysEngWebAPI​). ​If you want to change the model​, make a
copy of the repository and make changes to your own repository. Then instead of cloning our
repository onto the VM, you should clone your own.

In this manual i will be showing how to deploy the API onto a Microsoft Azure VM however
you can use any cloud hosting service you want. The first thing you need to do is create a
Ubuntu VM on Azure. When creating the VM, we recommend to choose a size under the
GPU family as this will enable us to use TensorFlow GPU which is significantly faster than
TensorFlow CPU for inferencing.

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/gohchanb/sysEngWebAPI
https://github.com/gohchanb/sysEngWebAPI

Picking a GPU compatible VM

However this is not necessary. And i will show how to setup the Web API using both
methods. The first thing to do once you create the VM is to ssh into the machine or use the
‘Serial console’ located in the ‘Support + Troubleshooting’ section. Once you are into the VM
you must run this command.

$sudo apt-get update

Next you must install python3 and pip for that version, for our project we used specifically
python3.6.7 so we would recommend you to use the same version or above. Depending on
the version of Ubuntu, this may be already installed but you will have to check for your
specific version. For the purpose of this manual, whenever i write ​$python ​or​ $pip ​ it
means those respective programs for version 3.6.7 of python. Next we need to install
TensorFlow onto the machines, this is where the process differs depending on that type of
VM you are using.

TensorFlow GPU (VMs in the GPU category/with a CUDA compatible GPU)
Install CUDA
Wget

https://developer.nvidia.com/compute/cuda/9.0/Prod/local_installer

s/cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64-deb

sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64-deb

sudo apt-key add /var/cuda-repo-9-0-local/7fa2af80.pub

sudo apt-get update

sudo apt-get install -y cuda

rm cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64-deb

Install CUDnn
When installing CUDnn we need to have a NVDIA account and login in order to
access CUDnn (which is free to create). The system requires CUDnn v7.3.0 in Linux
by following these steps below.

Please note that the link in the first line may be invalid when using as each user must
be verified therefore you may get the correct link after logging into your specific
NVIDIA account copying the link for the ​cuDNN v7.3.0 Library for Linux for CUDA 9.0

wget

https://developer.download.nvidia.com/compute/machine-learning/cud

nn/secure/v7.3.0/prod/9.0_2018920/cudnn-9.0-linux-x64-v7.3.0.29.tg

z

sudo tar -xzf cudnn-9.0-linux-x64-v7.tgz -C /usr/local

rm cudnn-9.0-linux-x64-v7.tgz

sudo ldconfig

Environment Variables
and add the following exports to ​~/.bashrc

export CUDA_HOME=/usr/local/cuda-9.0

export PATH=${CUDA_HOME}/bin:${PATH}

export

LD_LIBRARY_PATH=${CUDA_HOME}/lib64:/usr/local/cuda/lib64:${LD_LIBR

ARY_PATH}

Install tensorflow-gpu
sudo apt-get install -y python-pip python-dev

sudo pip install tensorflow-gpu

TensorFlow CPU (VMs without a CUDA compatible GPU)
$pip install tensorflow

All the libraries needed by our application should be installed however is they aren’t they can
be installed separately. This can be done by entering into the line below into the terminal but
replacing ​library ​with the library you want to download.

$pip install library

The full list of libraries currently on our VM can be found in the appendix (note: not all of
them are used).

To allow the application to communicate with the internet we need to add an inbound
security group. To do this, navigate to the network security group for the VM’s resource

group. Then go to ‘Inbound Security Rules’ and add the rule corresponding to the app’s port.
In our example we use port 65432.

Adding Inbound Security Rule

Next we need to download the git repository and navigate to the folder and run the API

$git clone ​https://github.com/gohchanb/sysEngWebAPI
$cd ​sysEngWebAPI
$python app.py

If all is successful, the console should show some TensorFlow information and then print

listening on (‘0.0.0.0’,65432)

Client Application
All the files needed for the client application are found in the ObjectDetectionAPI git
repository (​https://github.com/gohchanb/ObjectDetectionAPI​). Like the Web API, we have
been using python3.6.7 so we would recommend you to use the same version or above.
Therefore, for the purpose of this manual, whenever i write ​$python ​or​ $pip ​ it means
those respective programs for version 3.6.7 of python. To setup the environment we highly
recommend you to use virtualenv or some other python virtual environment manager.

https://github.com/gohchanb/sysEngWebAPI
https://github.com/gohchanb/sysEngWebAPI
https://github.com/gohchanb/ObjectDetectionAPI

Once you have activate the virtual environment you need to download the libraries needed
by the application. This can be done by entering into the line below into the terminal but
replacing ​library ​with the library you want to download.

$pip install library

!!!!! ta een ja

The list of libraries that need to be downloaded are listed below, with the versions we used.
This should download all the necessary sub libraries as well however the full list can be
found in the Appendix.

● pyqt5 (5.12.1)
● numpy (1.16.2)
● matplotlib (3.0.3)
● pillow (6.0.0)
● Tensorflow (1.13.1) - Only CPU needed by client
● mysql-connector-python (8.0.15)
● opencv-python (4.0.0.21)
● plotly (3.7.1)

After all the packages have been installed. The client files should be downloaded and you
should move into the folder.

$git clone ​https://github.com/gohchanb/ObjectDetectionAPI
$cd ObjectDetectionAPI

The application uses a database to log all the operation stats, so you have to add a
database to your local machine. The schema of the database can be found in the folder
under ​schema.sql ​and the database with some sample data already inside and a user can
be found under ​dbexport.sql. ​Either file can be used to import the database onto your local
machine. First you need to create the database called systemsEngineering. You might also
want to create a user that has access to only the systemsEngineering table. In our project
we used ‘sysEng’ as the users username and password.

Once the database has been created, you can import the the database with:
$mysql -u sysEng -p systemsEngineering < schema.sql

or
$mysql -u sysEng -p systemsEngineering < dbexport.sql

depending on which file you would like to use.

Next you need to configure the client application. All the relevant parameters are near the
top of the code.

https://github.com/gohchanb/ObjectDetectionAPI

Client application configuration settings

MIN_SCORE_THRESH is the minimum score needed for an instrument to be registered by
the application. We recommend you to keep it at 0.8 but you can change it.
MAX_LIST_COUNT and MIN_COUNT_THRESH are variables that describe how the
ListObject registers objects. Please refer to the ListObject section in the ‘Key Functionalities’
section to learn how they work, but again we recommend you to keep them unchanged.
HOST and PORT refer to the host and port of the WebAPI you should have set up earlier.
The PORT number should always be 65432 by default, while the HOST number should be
changed depending on the ip-address of your VM. CAMERA_NUMBER refers to the number
of the camera on your system that you want to use for your input. If your system only has 1
camera it will probably just be 0 however it will differ for different machines. Lastly we have
‘config’ which is the configuration for the database. Here we are using the login of our
custom user we made however u can change the ‘user’ and ‘password’ to any combination
which has access to the systemsEngineering database.

Once you have set all this up, you should be able to run the application by running.
$python object_detection_client.py

Appendix

VM list of libraries
absl-py (0.7.1)

astor (0.7.1)
beautifulsoup4 (4.4.1)
blinker (1.3)
chardet (2.3.0)
cloud-init (18.5)
command-not-found (0.3)
configobj (5.0.6)
cryptography (1.2.3)
defer (1.0.6)
gast (0.2.2)
grpcio (1.19.0)
gunicorn (19.4.5)
h5py (2.9.0)
html5lib (0.999)
idna (2.0)
Jinja2 (2.8)
jsonpatch (1.10)
jsonpointer (1.9)
Keras-Applications (1.0.7)
Keras-Preprocessing (1.0.9)
language-selector (0.1)
lxml (3.5.0)
Markdown (3.1)
MarkupSafe (0.23)
mock (2.0.0)
numpy (1.16.2)
oauthlib (1.0.3)
pbr (5.1.3)
pip (8.1.1)
prettytable (0.7.2)
protobuf (3.7.1)
pyasn1 (0.1.9)
pycups (1.9.73)
pycurl (7.43.0)
pygobject (3.20.0)
PyJWT (1.3.0)
pyserial (3.0.1)
python-apt (1.1.0b1+ubuntu0.16.4.2)
python-debian (0.1.27)
python-systemd (231)
pyxdg (0.25)
PyYAML (3.11)
requests (2.9.1)
screen-resolution-extra (0.0.0)
setuptools (20.7.0)
six (1.10.0)

ssh-import-id (5.5)
stevedore (1.30.1)
system-service (0.3)
tensorboard (1.12.2)
tensorflow-estimator (1.13.0)
tensorflow-gpu (1.12.0)
termcolor (1.1.0)
ufw (0.35)
unattended-upgrades (0.1)
urllib3 (1.13.1)
virtualenv (16.4.3)
virtualenv-clone (0.5.1)
virtualenvwrapper (4.8.4)
WALinuxAgent (2.2.32.2)
Werkzeug (0.15.1)
wheel (0.29.0)
xkit (0.0.0)

Client application Packages
Package Version
---------------------- --------
absl-py 0.7.1
astor 0.7.1
attrs 19.1.0
certifi 2019.3.9
chardet 3.0.4
cycler 0.10.0
decorator 4.4.0
gast 0.2.2
grpcio 1.19.0
h5py 2.9.0
idna 2.8
ipython-genutils 0.2.0
jsonschema 3.0.1
jupyter-core 4.4.0
Keras-Applications 1.0.7
Keras-Preprocessing 1.0.9
kiwisolver 1.0.1
Markdown 3.1
matplotlib 3.0.3
mock 2.0.0
mysql-connector 2.2.9
mysql-connector-python 8.0.15
nbformat 4.4.0
numpy 1.16.2
opencv-python 4.0.0.21
pbr 5.1.3
Pillow 6.0.0
pip 19.0.3
plotly 3.7.1
protobuf 3.7.1
pyparsing 2.4.0
PyQt5 5.12.1

PyQt5-sip 4.19.15
pyrsistent 0.14.11
python-dateutil 2.8.0
pytz 2018.9
requests 2.21.0
retrying 1.3.3
setuptools 41.0.0
six 1.12.0
tensorboard 1.13.1
tensorflow 1.13.1
tensorflow-estimator 1.13.0
termcolor 1.1.0
traitlets 4.3.2
urllib3 1.24.1
Werkzeug 0.15.2
wheel 0.33.1

