
Pridar Chatbot
Developer Manual

Adel Mouffok

Overview

Overview
Main Functions:

• Login/register

• Test

• Q/A

• View Scores

• View Resources

Databases:

• Jotform

• Airtable

Integrations:

• Sendgrid

• QuickChart

Overview
Main Functions:

• Login/register

• Test

• Q/A

• View Scores

• View Resources

Databases:

• Jotform

• Airtable

Integrations:

• Sendgrid

• QuickChart

Overview
Main Functions:

• Login/register

• Test

• Q/A

• View Scores

• View Resources

Databases:

• Jotform

• Airtable

Integrations:

• Sendgrid

• QuickChart

Overview
Main Functions:

• Login/register

• Test

• Q/A

• View Scores

• View Resources

Databases:

• Jotform

• Airtable

Integrations:

• Sendgrid

• QuickChart

Overview
Main Functions:

• Login/register

• Test

• Q/A

• View Scores

• View Resources

Databases:

• Jotform

• Airtable

Integrations:

• Sendgrid

• QuickChart

Overview
Main Functions:

• Login/register

• Test

• Q/A

• View Scores

• View Resources

Databases:

• Jotform

• Airtable

Integrations:

• Sendgrid

• QuickChart

Overview
Main Functions:

• Login/register

• Test

• Q/A

• View Scores

• View Resources

Databases:

• Jotform

• Airtable

Integrations:

• Sendgrid

• QuickChart

Overview
Main Functions:

• Login/register

• Test

• Q/A

• View Scores

• View Resources

Databases:

• Jotform

• Airtable

Integrations:

• Sendgrid

• QuickChart

Overview
Main Functions:

• Login/register

• Test

• Q/A

• View Scores

• View Resources

Databases:

• Jotform

• Airtable

Integrations:

• Sendgrid

• QuickChart

Overview
Main Functions:

• Login/register

• Test

• Q/A

• View Scores

• View Resources

Databases:

• Jotform

• Airtable

Integrations:

• Sendgrid

• QuickChart

Databases

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Notes:
Changing column names doesn’t
affect their question ID.
Always double check with the
form itself, or a GET request.

Deleted submissions may still
show up in API requests, but with
their “status” field as “DELETED”.
Check and filter these results out
when reading Jotform API
responses.

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Notes:
Changing column names doesn’t
affect their question ID.
Always double check with the
form itself, or a GET request.

Deleted submissions may still
show up in API requests, but with
their “status” field as “DELETED”.
Check and filter these results out
when reading Jotform API
responses.

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Notes:
Changing column names doesn’t
affect their question ID.
Always double check with the
form itself, or a GET request.

Deleted submissions may still
show up in API requests, but with
their “status” field as “DELETED”.
Check and filter these results out
when reading Jotform API
responses.

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Jotform Tables

Questions

• Questions – questions on the Pridar standard

• Subject – broad subject of the question (such as “Design”)

• Topic – specific topic of the question (such as “User KPIs”)

• Explanation – optional explanation/context for difficult questions

Resources
• Topic – specific topic within the Pridar standard (must match above)
• Explanation – general explanation/context of the topic
• Resources – useful links to help users research the topic

QA
• Topic – concise issue or subject matter of the question
• Question – user’s question
• User – user’s email
• Answer – space to record response (needs to be emailed to user when complete)

Airtable Tables

Credentials

• Account_Name – user’s name

• Password – user’s password

• Email – user’s email

• Score – user’s most recent scores (empty for new accounts)

Averages
• Scores – array of average scores for each topic
• Number – number of submissions in average (affects individual’s weight)

Notes:
If any changes are made to the number
of topics, average scores array must be
updated to reflect the new size.
Remember to give the new topic an
average score.

The number of submissions should be at
least 50.
This will give 1% deviations in the most
extreme cases (100% and 0% scores
being submitted).

Airtable Tables
Notes:
If any changes are made to the number
of topics, average scores array must be
updated to reflect the new size.
Remember to give the new topic an
average score.

The number of submissions should be at
least 50.
This will give 1% deviations in the most
extreme cases (100% and 0% scores
being submitted).

Credentials

• Account_Name – user’s name

• Password – user’s password

• Email – user’s email

• Score – user’s most recent scores (empty for new accounts)

Averages
• Scores – array of average scores for each topic
• Number – number of submissions in average (affects individual’s weight)

Airtable Tables
Notes:
If any changes are made to the number
of topics, average scores array must be
updated to reflect the new size.
Remember to give the new topic an
average score.

The number of submissions should be at
least 50.
This will give 1% deviations in the most
extreme cases (100% and 0% scores
being submitted).

Credentials

• Account_Name – user’s name

• Password – user’s password

• Email – user’s email

• Score – user’s most recent scores (empty for new accounts)

Averages
• Scores – array of average scores for each topic
• Number – number of submissions in average (affects individual’s weight)

Airtable Tables

Credentials

• Account_Name – user’s name

• Password – user’s password

• Email – user’s email

• Score – user’s most recent scores (empty for new accounts)

Averages
• Scores – array of average scores for each topic
• Number – number of submissions in average (affects individual’s weight)

Airtable Tables

Credentials

• Account_Name – user’s name

• Password – user’s password

• Email – user’s email

• Score – user’s most recent scores (empty for new accounts)

Averages
• Scores – array of average scores for each topic
• Number – number of submissions in average (affects individual’s weight)

Airtable Tables

Credentials

• Account_Name – user’s name

• Password – user’s password

• Email – user’s email

• Score – user’s most recent scores (empty for new accounts)

Averages
• Scores – array of average scores for each topic
• Number – number of submissions in average (affects individual’s weight)

Airtable Tables

Credentials

• Account_Name – user’s name

• Password – user’s password

• Email – user’s email

• Score – user’s most recent scores (empty for new accounts)

Averages
• Scores – array of average scores for each topic
• Number – number of submissions in average (affects individual’s weight)

Airtable Tables

Credentials

• Account_Name – user’s name

• Password – user’s password

• Email – user’s email

• Score – user’s most recent scores (empty for new accounts)

Averages
• Scores – array of average scores for each topic
• Number – number of submissions in average (affects individual’s weight)

Airtable Tables

Credentials

• Account_Name – user’s name

• Password – user’s password

• Email – user’s email

• Score – user’s most recent scores (empty for new accounts)

Averages
• Scores – array of average scores for each topic
• Number – number of submissions in average (affects individual’s weight)

Airtable Tables

Credentials

• Account_Name – user’s name

• Password – user’s password

• Email – user’s email

• Score – user’s most recent scores (empty for new accounts)

Averages
• Scores – array of average scores for each topic
• Number – number of submissions in average (affects individual’s weight)

Airtable Tables

Credentials

• Account_Name – user’s name

• Password – user’s password

• Email – user’s email

• Score – user’s most recent scores (empty for new accounts)

Averages
• Scores – array of average scores for each topic
• Number – number of submissions in average (affects individual’s weight)

Algorithms

System

Chosen FunctionMain MenuLogin / Register

Exit

Login

Check Username
Exists

Check Password
Correct

Input
Password

“Recover”
Keyword

Recovery Email

Input
Username

Load
Email/Score/ID

Register

Check Username
Unique

Send Verification
Code

Input
Password
and Email

Input
Code

Check Verification
Code

Input
Username

Initialize Score/ID

Upload Details

Test Overview

Retrieve/Organise data

Main question loop

Post-test results

Test

Test Data

Jotform
Organise

questions by
subject and topic

Organise subject
references

Voiceflow

“all_data[subject][topic]” “topic_explanations[topic][data]”

Data

Question Loop

• Check subject number
• Get subject name
• Get subject size

Iterate Subject
• Check topic number
• Get topic name
• Get topic size
• Ask user to test

Iterate Topic

NO
Topic Score = 0

YES

Ask question

YES

NO

IDK

Topic Score + 1

Topic Score + 0

Explain Ask Question Y/N

Revise Topic Later

Post-Test

Calculate Score
(weighted)

POST graph

GET averages

• PATCH user score
• PUT new averages

Display
Revision

Resources

API

QuickChart

Airtable

Airtable

(Optional)

QA

Check
Length

Ask User’s Topic Ask User’s Question

POST to Jotform

View Scores

GET averages
(Airtable)

Check user
score’s length

POST graph
(QuickChart)

View Resources

GET Resources
(Jotform)

Organise
Resources

Display Resources

“ topic_information
=

[[name, explanation, resources], …]”

Integrations

API Usage

Airtable

• Retrieve and update user account details (due to Jotform restrictions)

• Retrieve and update score averages

Sendgrid

• Email users for verification

• Email users for password recovery

Jotform

• Retrieve all information relating to the Pridar standard

• Post user queries

Quickchart

• Generate visualizations of user data

Voiceflow (via Telegram)

• Deployment of the bot

API Usage

Airtable

• Retrieve and update user account details (due to Jotform restrictions)

• Retrieve and update score averages

Sendgrid

• Email users for verification

• Email users for password recovery

Jotform

• Retrieve all information relating to the Pridar standard

• Post user queries

Quickchart

• Generate visualizations of user data

Voiceflow (via Telegram)

• Deployment of the bot

API Usage

Airtable

• Retrieve and update user account details (due to Jotform restrictions)

• Retrieve and update score averages

Sendgrid

• Email users for verification

• Email users for password recovery

Jotform

• Retrieve all information relating to the Pridar standard

• Post user queries

Quickchart

• Generate visualizations of user data

Voiceflow (via Telegram)

• Deployment of the bot

API Usage

Airtable

• Retrieve and update user account details (due to Jotform restrictions)

• Retrieve and update score averages

Sendgrid

• Email users for verification

• Email users for password recovery

Jotform

• Retrieve all information relating to the Pridar standard

• Post user queries

Quickchart

• Generate visualizations of user data

Voiceflow (via Telegram)

• Deployment of the bot

API Usage

Airtable

• Retrieve and update user account details (due to Jotform restrictions)

• Retrieve and update score averages

Sendgrid

• Email users for verification

• Email users for password recovery

Jotform

• Retrieve all information relating to the Pridar standard

• Post user queries

Quickchart

• Generate visualizations of user data

Voiceflow (via Telegram)

• Deployment of the bot

API Usage

Airtable

• Retrieve and update user account details (due to Jotform restrictions)

• Retrieve and update score averages

Sendgrid

• Email users for verification

• Email users for password recovery

Jotform

• Retrieve all information relating to the Pridar standard

• Post user queries

Quickchart

• Generate visualizations of user data

Voiceflow (via Telegram)

• Deployment of the bot

API Usage

Airtable

• Retrieve and update user account details (due to Jotform restrictions)

• Retrieve and update score averages

Sendgrid

• Email users for verification

• Email users for password recovery

Jotform

• Retrieve all information relating to the Pridar standard

• Post user queries

Quickchart

• Generate visualizations of user data

Voiceflow (via Telegram)

• Deployment of the bot

API Usage

Airtable

• Retrieve and update user account details (due to Jotform restrictions)

• Retrieve and update score averages

Sendgrid

• Email users for verification

• Email users for password recovery

Jotform

• Retrieve all information relating to the Pridar standard

• Post user queries

Quickchart

• Generate visualizations of user data

Voiceflow (via Telegram)

• Deployment of the bot

API Usage

Airtable

• Retrieve and update user account details (due to Jotform restrictions)

• Retrieve and update score averages

Sendgrid

• Email users for verification

• Email users for password recovery

Jotform

• Retrieve all information relating to the Pridar standard

• Post user queries

Quickchart

• Generate visualizations of user data

Voiceflow (via Telegram)

• Deployment of the bot

Notes

• Variables in Voiceflow must be added globally to be
used outside of code blocks

• Variables in Voiceflow are accessed via
{variable_name}, even in API bodies and parameters
(the code block is the only place they may be called by name
without braces)

• All API responses are in JSON format
• All data sent through these APIs should be in JSON

format
• Use “JSON.stringify(variable_name)” to convert

variables to JSON format
• Use “JSON.parse(variable_name)” to parse JSON

into appropriate Javascript types

Notes

• Variables in Voiceflow must be added globally to
be used outside of code blocks

• Variables in Voiceflow are accessed via
{variable_name}, even in API bodies and parameters
(the code block is the only place they may be called by name
without braces)

• All API responses are in JSON format
• All data sent through these APIs should be in JSON

format
• Use “JSON.stringify(variable_name)” to convert

variables to JSON format
• Use “JSON.parse(variable_name)” to parse JSON

into appropriate Javascript types

Notes

• Variables in Voiceflow must be added globally to be
used outside of code blocks

• Variables in Voiceflow are accessed via
{variable_name}, even in API bodies and
parameters (the code block is the only place they may be
called by name without braces)

• All API responses are in JSON format
• All data sent through these APIs should be in JSON

format
• Use “JSON.stringify(variable_name)” to convert

variables to JSON format
• Use “JSON.parse(variable_name)” to parse JSON

into appropriate Javascript types

Notes

• Variables in Voiceflow must be added globally to be
used outside of code blocks

• Variables in Voiceflow are accessed via
{variable_name}, even in API bodies and parameters
(the code block is the only place they may be called by name
without braces)

• All API responses are in JSON format
• All data sent through these APIs should be in JSON

format
• Use “JSON.stringify(variable_name)” to convert

variables to JSON format
• Use “JSON.parse(variable_name)” to parse JSON

into appropriate Javascript types

Notes

• Variables in Voiceflow must be added globally to be
used outside of code blocks

• Variables in Voiceflow are accessed via
{variable_name}, even in API bodies and parameters
(the code block is the only place they may be called by name
without braces)

• All API responses are in JSON format
• All data sent through these APIs should be in JSON

format
• Use “JSON.stringify(variable_name)” to convert

variables to JSON format
• Use “JSON.parse(variable_name)” to parse JSON

into appropriate Javascript types

Notes

• Variables in Voiceflow must be added globally to be
used outside of code blocks

• Variables in Voiceflow are accessed via
{variable_name}, even in API bodies and parameters
(the code block is the only place they may be called by name
without braces)

• All API responses are in JSON format
• All data sent through these APIs should be in JSON

format
• Use “JSON.stringify(variable_name)” to convert

variables to JSON format
• Use “JSON.parse(variable_name)” to parse JSON

into appropriate Javascript types

Notes

• Variables in Voiceflow must be added globally to be
used outside of code blocks

• Variables in Voiceflow are accessed via
{variable_name}, even in API bodies and parameters
(the code block is the only place they may be called by name
without braces)

• All API responses are in JSON format
• All data sent through these APIs should be in JSON

format
• Use “JSON.stringify(variable_name)” to convert

variables to JSON format
• Use “JSON.parse(variable_name)” to parse JSON

into appropriate Javascript types

Jotform API

GET Request
• Add form ID in request url

and specify “/submissions”

• API key to authorise
requests

• Store response in variable

• Set parameter “limit” to
1000

• Specify columns by
question ID (obtained in
Jotform)
“request.content[x].answers[n].answer”

Response:

GET Request
• Add form ID in request url

and specify “/submissions”

• API key to authorise
requests

• Store response in variable

• Set parameter “limit” to
1000

• Specify columns by
question ID (obtained in
Jotform)
“request.content[x].answers[n].answer”

Response:

GET Request
• Add form ID in request url

and specify “/submissions”

• API key to authorise
requests

• Store response in variable

• Set parameter “limit” to
1000

• Specify columns by
question ID (obtained in
Jotform)
“request.content[x].answers[n].answer”

Response:

GET Request
• Add form ID in request url

and specify “/submissions”

• API key to authorise
requests

• Store response in variable

• Set parameter “limit” to
1000

• Specify columns by
question ID (obtained in
Jotform)
“request.content[x].answers[n].answer”

Response:

GET Request
• Add form ID in request url

and specify “/submissions”

• API key to authorise
requests

• Store response in variable

• Set parameter “limit” to
1000

• Specify columns by
question ID (obtained in
Jotform)
“request.content[x].answers[n].answer”

Response:

GET Request
• Add form ID in request url

and specify “/submissions”

• API key to authorise
requests

• Store response in variable

• Set parameter “limit” to
1000

• Specify columns by
question ID (obtained in
Jotform)
“request.content[x].answers[n].answer”

Response:

Array of submissions

End of array element (submission)

Question ID and stored value

POST Request
• Add form ID in request url

and specify “/submissions”

• API key to authorise
requests

• Specify columns by
question ID (obtained in
Jotform)
“submission[n]”

• Add parameter for each
column submission

POST Request
• Add form ID in request url

and specify “/submissions”

• API key to authorise
requests

• Specify columns by
question ID (obtained in
Jotform)
“submission[n]”

• Add parameter for each
column submission

POST Request
• Add form ID in request url

and specify “/submissions”

• API key to authorise
requests

• Specify columns by
question ID (obtained in
Jotform)
“submission[n]”

• Add parameter for each
column submission

POST Request
• Add form ID in request url

and specify “/submissions”

• API key to authorise
requests

• Specify columns by
question ID (obtained in
Jotform)
“submission[n]”

• Add parameter for each
column submission

POST Request
• Add form ID in request url

and specify “/submissions”

• API key to authorise
requests

• Specify columns by
question ID (obtained in
Jotform)
“submission[n]”

• Add parameter for each
column submission

Airtable API

GET Request
• Add base ID and table

name in request url

• API key to authorize
requests, add “Bearer”
before key
“Bearer key123xyz”

• Store response in variable

• Specify columns by name

• Note: returns data 100 records
at a time, requires pagination
and offsets to read further

GET Request
• Add base ID and table

name in request url

• API key to authorize
requests, add “Bearer”
before key
“Bearer key123xyz”

• Store response in variable

• Specify columns by name

• Note: returns data 100 records
at a time, requires pagination
and offsets to read further

GET Request
• Add base ID and table

name in request url

• API key to authorize
requests, add “Bearer”
before key
“Bearer key123xyz”

• Store response in variable

• Specify columns by name

• Note: returns data 100 records
at a time, requires pagination
and offsets to read further

GET Request
• Add base ID and table

name in request url

• API key to authorize
requests, add “Bearer”
before key
“Bearer key123xyz”

• Store response in variable

• Specify columns by name

• Note: returns data 100 records
at a time, requires pagination
and offsets to read further

GET Request
• Add base ID and table

name in request url

• API key to authorize
requests, add “Bearer”
before key
“Bearer key123xyz”

• Store response in variable

• Specify columns by name

• Note: returns data 100 records
at a time, requires pagination
and offsets to read further

Record

Array of records

Columns and stored values

Individual record

GET Request
• Add base ID and table

name in request url

• API key to authorize
requests, add “Bearer”
before key
“Bearer key123xyz”

• Store response in variable

• Specify columns by name

• Note: returns data 100 records
at a time, requires pagination
and offsets to read further

1

2

3

4

5

. . .

POST Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON object “fields”
containing each column name
and its value

POST Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON object “fields”
containing each column name
and its value

POST Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON object “fields”
containing each column name
and its value

POST Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON object “fields”
containing each column name
and its value

POST Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON object “fields”
containing each column name
and its value

POST Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON object “fields”
containing each column
name and its value

PATCH Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record and the
information inside it to update

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

PATCH Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record and the
information inside it to update

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

PATCH Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record and the
information inside it to update

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

PATCH Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record and the
information inside it to update

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

PATCH Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record and the
information inside it to update

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

PATCH Request
• Add table ID and table name in

request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header with
value “application/json”

• Add content in url body with raw
formatting

• JSON array “records” containing
the record and the information
inside it to update

• Refer to each record by its “id”
property (found on Airtable and
in GET requests)

PATCH Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record and the
information inside it to update

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

PUT Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record to
replace the old one with

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

PUT Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record to
replace the old one with

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

PUT Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record to
replace the old one with

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

PUT Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record to
replace the old one with

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

PUT Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record to
replace the old one with

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

PUT Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record to
replace the old one with

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

Replacement record

PUT Request
• Add table ID and table name

in request url

• API key to authorize requests,
add “Bearer” before key
“Bearer key123xyz”

• Add “Content-Type” header
with value “application/json”

• Add content in url body with
raw formatting

• JSON array “records”
containing the record to
replace the old one with

• Refer to each record by its
“id” property (found on
Airtable and in GET requests)

QuickChart API

POST Request
• Add “Content-Type” header

with value
“application/json”

• Specify the graph in the url
body with raw formatting

• Save “response.url” to
variable

• Upon clicking the url, the
graph begins to be
rendered

• Note: may not show
instantly for complicated
graphs

POST Request
• Add “Content-Type”

header with value
“application/json”

• Specify the graph in the url
body with raw formatting

• Save “response.url” to
variable

• Upon clicking the url, the
graph begins to be
rendered

• Note: may not show
instantly for complicated
graphs

POST Request
• Add “Content-Type” header

with value
“application/json”

• Specify the graph in the url
body with raw formatting

• Save “response.url” to
variable

• Upon clicking the url, the
graph begins to be
rendered

• Note: may not show
instantly for complicated
graphs

Graph type

Vertices of the radar graph

Name and array of
data for each vertex

Additional scale
adjustments

POST Request
• Add “Content-Type” header

with value
“application/json”

• Specify the graph in the url
body with raw formatting

• Save “response.url” to
variable

• Upon clicking the url, the
graph begins to be
rendered

• Note: may not show
instantly for complicated
graphs

POST Request
• Add “Content-Type” header

with value
“application/json”

• Specify the graph in the url
body with raw formatting

• Save “response.url” to
variable

• Upon clicking the url, the
graph begins to be
rendered

• Note: may not show
instantly for complicated
graphs

POST Request
• Add “Content-Type” header

with value
“application/json”

• Specify the graph in the url
body with raw formatting

• Save “response.url” to
variable

• Upon clicking the url, the
graph begins to be
rendered

• Note: may not render
instantly for complicated
graphs

Sendgrid API

POST Request
• Authorization header with

private key as value

• Content-Type header with
application/json as value

• Body contains sender and
recipient email addresses,
as well as subject and
content of email

POST Request
• Authorization header with

private key as value

• Content-Type header with
application/json as value

• Body contains sender and
recipient email addresses,
as well as subject and
content of email

POST Request
• Authorization header with

private key as value

• Content-Type header with
application/json as value

• Body contains sender and
recipient email addresses,
as well as subject and
content of email

POST Request
• Authorization header with

private key as value

• Content-Type header with
application/json as value

• Body contains sender and
recipient email addresses,
as well as subject and
content of email

Telegram Deployment

Voiceflow API
• POST requests to Voiceflow

require secret key and special ID
for every user to track state

• Body of the POST request
cointains the action type
(text,choice etc.) and the
payload.

• Launch method posts request
with action type "launch" to
retrieve messages upon
launching the chatbot

• Sendmsg method posts request
with corresponding action type
and the payload

Telegram Deployment
• Uses the telebot library to handle API calls
• TeleBot object created using secret key generated
• Bot.polling() method allows the bot to continuously

listen for new messages from user
• Start method is called when user uses the start

command in telegram, calls the launch method and
outputs the response to the user

• All other messages are passed through
handle_message method where the sendMsg
method is called with user's input, depending on the
response type different action is taken

• Upon type "text" the reponse is outputted to the user
• Upon type "choice" the choices are stored and

displayed to the user, the choice flag is set to true so
that the next user response is set as choice type in
the voiceflow API call

• Upon type "end" the conversation is terminated.

Testing

Testing
• Share prototype as a link

• Traverse down desired path
until either hitting an error
or natural end of program
(closing or refreshing
halfway won’t work)

• Open “Transcripts” tab

• Make sure “Debug
Messages” is ticked

Testing
• Share prototype as a link

• Traverse down desired path
until either hitting an error
or natural end of program
(closing or refreshing
halfway won’t work)

• Open “Transcripts” tab

• Make sure “Debug
Messages” is ticked

Testing
• Share prototype as a link

• Traverse down desired
path until either hitting an
error or natural end of
program (closing or
refreshing halfway won’t
work)

• Open “Transcripts” tab

• Make sure “Debug
Messages” is ticked

Testing
• Share prototype as a link

• Traverse down desired path
until either hitting an error
or natural end of program
(closing or refreshing
halfway won’t work)

• Open “Transcripts” tab

• Make sure “Debug
Messages” is ticked

Testing
• Share prototype as a link

• Traverse down desired path
until either hitting an error
or natural end of program
(closing or refreshing
halfway won’t work)

• Open “Transcripts” tab

• Make sure “Debug
Messages” is ticked

Debugging messages

