FINAL PROJECT

ENGDUINO RACE (STEP COUNTER)

In this tutorial, we will teach you to write the code to make an Engduino race meter! Let’s call our
little Engduino race meter a Pedometer.

Our Pedometer will count the number of steps the user take and light up the Engduino’s LED
according to the number of steps he/she takes! So at the end of the race you and your friends can
take a healthy run then compare to each other who wins the race by counting the total of LEDs
lights that lit!

We are able to use the Engduino to create a simple Pedometer by using the accelerometer on the
Engduino. The Pedometer counts the number of steps the user takes by calculating the acceleration
from the Engduino.

GETTING STARTED!

Before we can create our Pedometer, we have to set up the script first!

Create
Script

First, click on "Create Script”

pick a script template...

search templates

blank arduino

An empty Arduino sketch.

blank esplora
An empty Arduino Esplora script.
blank engduino <:| Click this
An empty Engduino script.
others

Next, click on "blank engduino”

blank engduino

An empty Engduino script.

Pedometeﬂ

Create

Name your new script as "Pedometer” and click create

action main ()
- Pedometer
% cript properties | This action emulates the code loop in the bug and will not be compiled.
B publish
my scripts o B> setup
@ @ while true do
@ arduino upload ~ serial monitor © > |00p
end while

un add new action, event, ... end action
@ or event, variable, library reference, record

— code

> B> main() @
@ This action emulates the code loc
sl P> loop() Click this
@ an action
> setupl()
@ an action
> variables()
@ an action

This is the main page of your script! But before we start coding, we need to delete some codes
from the template!

®

W
«zgn
o o
oL

my scripts

®

run

©

undo

®
DODOR

split

®

r\
®)

o
(D

Pedometer

script properties

>

| private action loop () |<:I Click this

I & engduino — set all LEDs(colors — random)
e . & engduino — delay(200)
@ @ -t engduino — set all LEDs(colors — black)
+ ¥ engduino — delay(200)
end action

arduino upload serial monitor

add new action, event, ...

or event, variable, library reference, record

main() @

@ This action emulates the code lot

>
]

>
€]

CAv)

loop()

an actoon

setup()

an action

variables()

an actoon

Click on the "private action loop()" to bring up the menu to delete the loop function.

@

dismiss

@

run

)

undo

®

split

action

loop

private action loop ()

+ €@ engduino — set all LEDs(colors — random)
+ & engduino — delay(200)

+ & engduino — set all LEDs(colors — black)

+ & engduino — delay(200)

private action end action

Private actions do not get a run button.

D 'atomic’ action more info

add input parameter
create a new paramete

add output parameter
create a new paramete

cut

copy

delete

<:| Clck this

Ready for more options? Change skill level!

Click on "delete” to delete the function.

. action main ()
Pedometer @
.) | This action emulates the code loop in the bug and will not be compiled.
script properties |
publish
my scripts] > setup
@ @ while true do
O [
arduino upload serial monitor
@ i cannot find property 'loop' on code 101121
run add new action, event, .. end while
or event, variable, liorary reference, record end action

©)

code

@ [>main() @
@ This action emulates the code loc
split D> setup()
© an action
> variables()
@ an action

You will be redirected to the Main function. Click on loop statement and delete it from the codes.

undo

®)

LET'S START CODING OUR PEDOMETER!

action main ()
(L[> setup
|var counter:=0

| We declare a counter variable to count the number of steps the user has taken in total

Create a variable and rename it to "counter” and initialise it to O.

action main ()
CL[> setup
|var counter := 0
| We declare a counter variable to count the number of steps the user has taken in total
while true do
@Lvar p := ¢»engduino — acceleration

Next we create a variable "p" and assign it with the Engduino's accelerometer!

action main ()
- P setup

var counter:=0

We declare a counter variable to count the number of steps the user has taken in total

while true do

Lvar p:= ¢¥engduino — acceleration
varx .= p—X
vary:=p-y
varZ =p—=Z

We assign 3 different variables to store our XY and Z values of the Engduino’s Accelerometer

Next, we store the accelerometer’s X,Y and Z readings to 3 variables.

action main ()
|,:‘ > setup
var counter:= 0
We declare a counter variable to count the number of steps the user has taken in total
while true do
. var p:= € engduino — acceleration
varx:=p-—xXx
vary:=p-y
varz =p—-Z
We assign 3 different variables to store our XY and 7 values of the Engduina's Accelerometer
var acceleration:=x*x+y*y+z*z
acceleration := math — sqrt(acceleration)

In order to calculate the acceleration from the Engduino, we have to sum the square of x,y,z and square root
the summation

We create a new variable "acceleration” which sums the square of X,Y and Z.
We then square root the summation to get the real acceleration.
The acceleration formula is given as :

Acceleration = \/x? + y? + z?

The acceleration formula calculates the user's acceleration by using all 3 axis of the accelerometer
to determine if the user has taken a step

*Note that this calculation is not the real way of how an actual pedometer calculates a step!

action main ()
% > setup
|var counter:= 0
| We declare a counter variable to count the number of steps the user has taken in total
while true do
(Lvar p := v engduino — acceleration
| varx:=p-—xX
| vary:=p—y
| varz = p-—12Z
| We assign 3 different variables to store our X,Y and Z values of the Engduino's Accelerometer
|var acceleration:=x*x+y*y+z*z
|acce|eration := math — sqrt(acceleration)

In order to calculate the acceleration from the Engduino, we have to sum the square of xy,z and square root
the summation

if acceleration 2 1.1 then

counter := counter + 1

For us to register a step, we have to make sure the acceleration from the user is at least of acceleration 1.1

In order for us to know if a user has taken a step, we have to check if the acceleration of the user
is above 1.1g. If the acceleration is above 1.1g, we consider it as a step and we add the step to the
counter!

CREATING LED OUTPUT ACCORDING TO NO. OF STEPS TAKEN.

create a new ...

Type to search..

Pedometer

’ script properties

publish

©©

_ ~— P action| <::| Clickthis
arduino upload _serial monitor Code that performs 3 specific tack
add new action, event, ... i
or event, variable, library reference, record > Pagel)
A user interface
code ﬁ {library
Click this A reference to lbrary saript
> main() @
Q@ an action Bdata
un A global variable
> setup() _
® o s & picture resource
an action @
A picture from the web
> variables() aeound
® 2n action G Sound resource
A sound from the web

We will add a new action to show the output of the counter on the Engduino’'s LED

action private action StepCounter ()
do nothing

dismiss StepCounte end action
/ | private action <:|

Private actions do not get a run button

@)

Q)

run

'atomic’ action more info

add input parameter <:|
Ccreate a NeEw parameter

©)

undo

@)

add output parameter

Create a new parameter

split

cut copy

delete

We will rename our action to "StepCounter” and make it a private action and also add an input
parameter.

private action StepCounter (

step : Number)
do

for O
if i

IA

i <17 do
0 then
i+ 1
=+ '+'returns a 'Number'; insert 'post to wall' if you want to display it
else do nothing end if
- € engduino — set LED(OQ, colors — black)

We rename our input parameter to "step” (This input will be the counter from the main function!)
and include a "for" loop with a range of 0 to 16 because we want to light up all 16 LEDs on the
Engduino.

We also include a statement to make i=1 as the LED output starts from 1 and not 0.

private action StepCounter (

step : Number)
do

for O
if i

IA

i <17 do
0 then
I+1
= '+' returns a 'Number'; insert 'post to wall" if you want to display it
else do nothing end if
tvengduino — set LED(O, colors — black)
var count :=i* 20

if step > count then
tv engduino — set LED(i, colors — green)
I+1
= '+' returns a 'Number'; insert 'post to wall" if you want to display it

Next, we create a new variable called ‘count’ and initialize it to be the number of steps we want
the user to take so that a LED will light up. In this case, we want the user to walk 20 steps before
lighting one LED up.

In order for all 16 LEDs to be lighted up on the Engduino, the user has to walk :
16 * No. of steps you want the user to take*

So in the case of our code, the user has to walk 320 steps so that all the LED would light up.

*You can assign any value you want the user to walk before lighting up an LED!

private action StepCounter (

step : Number)
do

forO<i<17do
if i = 0 then
I+ 1
* '+' returns a 'Number'; insert 'post to wall' if you want to display it
else do nothing end if
. € engduino — set LED(O, colors — black)

AN

var count:=i* 20
if step > count then
4 @ engduino — set LED(|, colors — green)
I+ 1
* '+' returns a 'Number’; insert 'post to wall' if you want to display it
if i = 16 then
- € engduino — set all LEDs(colors — black)
- € engduino — delay(500)
- € engduino — set all LEDs(colors — green)
. € engduino — delay(500)
else do nothing end if
else do nothing end if
end for

end action beta 80345 © 2015 Microsoft

In the code above, we add a conditional statement to check if the user have completed the
required amount of steps to light up all the LED on the Engduino. If the user have completed the
requirement, the Engduino will start flashing to indicate that he/she is done.

COMPLETING OUR PEDOMETER!

action main ()
|® > setup
var counter:=0
We declare a counter variable to count the number of steps the user has taken in total
while true do
CLwar p := ¢ engduino — acceleration
| varx:=p—X
vary:.=p-—y
varz = p—12Z
We assign 3 different variables to store our X,Y and 7 values of the Engduino's Accelerometer
var acceleration ;= x*x+y*y+z*z
acceleration := math — sqrt(acceleration)

In order to calculate the acceleration from the Engduino, we have to sum the square of x,y,z and square root
the summation

if acceleration = 1.1 then

counter := counter + 1

For us to register a step, we have to make sure the acceleration from the user is at least of acceleration 1.1
else do nothing end if
(L [> StepCounter(counter)

| We create a new function to show the number of steps taken
end while
end action

In order to finish our Pedometer, we have to add the "StepCounter” function in our main function
and pass in the "counter” variable as the input parameter!

Final Product!

For every 4 completed sets of steps taken, the LED will light up from Red to Orange to Yellow and
lastly Green. The first 4 set of LED should be Red and once the user complete the 5th set, all the
lighted LED will change to Orange instead. The table below shows the full problem that you should
solve!

Challenge your friends to see who is able to solve this problem the fastest and show the result to
your teacher!

Steps taken LED color LED
(Steps needed for one set: 20)

0 - 4 * Steps needed 1,2,3,4
(0 - 80 steps)

5 * Steps needed - 8 * Steps Orange 1,2,3,4,5,6,7,8
Needed

(100 - 160 steps)

9 * Steps needed - 12 * Steps Yellow 1,2,3,4,5,6,7,8,9,10,11,12
needed

(180 steps - 240 steps)

13 * Steps needed - 16 * Steps Green 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
needed

(260 steps - 320 steps)

Above 16 * Steps needed Green All LED blinking
(Above 320 steps)

REFERENCES

Full working code of tutorial : TouchDevelop Pedometer

http://tdev.ly/ufoy

