@@ touchdevelop
OO == Research

1|Page

(=15 1S3 [a1 o e [0 Tt (o] o N 1

2. Introduction tO TOUChDEVELOP...ciiuttiiiit it et eiit ettt eeieeeeeneeeeeaeeesnseeesnaesennaeens 3
3. Fundamental Materials of COmMpPULEr SCIENCE. .. .iiiiiiiiiiiiiiiiii it eiieiieeeireeeannaeaanns 9
T R D =Y £ T Y o = S P 9
0t IO PR N0 4]0 = N 9
T O A o o | £ TP 10
R O TR = o To 1 U= 1o L PP 10
K I I T (o1 0] o= - | £] (PP PP 11
T S TR\ e 0 o 1T =) o] G PPN 11
K I TR 0] g 6] o 7] -1 o) SRR PP PP PP 11
- 1 T o] (= S PP 12
G TR 1017 1o =3 o N 13
K I U= T 110 10| OO PP PP PP 15
KR T 00 1] - L (o] £ S PP PP PP PP 19
T | =T Lo I 2L C N | PPN 24
K o o] o LS PSP PPPPPN 26
% R o gl o To] o PP 26
3.7.2. WHILE LOOP tiuuttiiiitiiiitiiiitteiattteeteeenneeeanneeeenneesenessenneesenneessnnessnnnes 27
4, Meet the ENgdUiNO! ..ottt ittt et ettt ettt eeireeeanaeeeenseeeanseeesnassennaeenn 28
4.1, Introduction t0 ENGAUINOuviiiitiiiitiiitteiiteeereeeenneeeenneesenneesenneeesnnessanneens 28
4.2. Components iN ENGAUINO «.cuuiiiiiiiiii it ii i et eeeiteeeeeeeenneeeenneesannaeenn 28
4.3. Implementation of while and for loOPS....cc.vviiiiiiiiiiiiiiii e eeees 30
4.4, The BUtton in ENGAUINO ...iuueiiiitiiiiiiiiiieiitteeneerenneerenneeeenneeesnneeesnnessanneens 33
4.5, The LEDS iN ENGAUINO t.uuuiiiiitiiiiitiiiiieii ettt eieeeieeeeireeeenseeeenaaeeensesennnaenn 34
4.6. The Accelerometer in ENGdUINOcoinuiiiiiiiiiiiiiiiiiii it eir e ci i eeanaaeas 36
4.7. Summary Game (The World Cup Flags ENgduing)c.ceeviiniiriiiiiiieirinneerenneenannenns 42
5. Final Project (The ENgdUuine RACE) «..uuiiiiiiiiiiiiiiiiiii ittt it i e eeie e e e e ennaaeanns 46
5.1, Getting Started ..ottt it et et e et ettt et e e e e e eaaeaeenaeaaanaes 46
5.2, Let’s STart Coding «o.uueiiiitiiiitiiiitieeneeeenteeeaneereaneerenneesenneesennnessnneessnnessannes 49
5.3. Completing the PedOmMEteruiiii it ettt ee e eeereeeenaaeannas 56
5.4, Challenge Problemciiiiiii i e e eeeeeeeterenneeeenneesanneessnneesnnnes 57
L - Vel T gl o = P 58
6.1. Uploading Engduino to TOUChDEVELIOPc.uviiiiiiiiiiiiiiiiiiii it e eeaeeeas 58
6.2. Bugs with Engduino and TouChDEVEIOPvviiieiiiiiiiiiiieiiieeiieeeneeeenneeeenneannns 61

2| Page

BRIEF INTRODUCTION

In these tutorials we’re going to introduce you to the very first step on how to use
Microsoft’s touchdevelop online coding. In addition, you will also learn some basic
fundamentals on how to think like a programmer through some exercises. We will also
include some coding knowledge that is commonly used in many programming language, so
you can get used to the idea of programming itself. So what are we waiting for? Let’s
get started!

PART | - INTRODUCTING TOUCH DEVELOP

TouchDevelop is an interactive environment for learning programming. It is mainly designed for mobile
devices. It lets you create programs that works on mobile platforms such as i0OS, android and windows.
Go to this link https://www.touchdevelop.com/. Create an account and log in. You will be directed to
the main page as shown in Figure 1. Select you coding skill by clicking the Skill level tab in the main

page

my Scripts

Jo

Search
everything

Export to
Windows, Skill level:
Tutorial Android, iOS, begi
utorials Azure eginner

kol
Search P

Help

API Docs

Figure 1 Touchdevelop home

HOW TO PRACTICE WITH EXISTING TUTORIALS

In the main page, click Tutorials. You will be directed to this page shown below. Click the “first steps
with turtle” tutorial. If it is not in the featured page you can search for it in the search box in the top
left. Also try the other tutorials such as jumping bird, coding jetpack jumper to get yourself familiar
with TouchDevelop. If you need more help on using TouchDevelop, check out the TouchDevelop
Programming on the Go. Get the book here:

3| Page

https://www.touchdevelop.com/docs/book

@ Search here...

the hub

games

Resources on creating games.

getting started
A few tips on getting started with
TouchDevelop.

language

Language syntax.

social coding

Understanding the script lifecycle in
TouchDevelop

teach
Teaching with TouchDevelop.

featured

Coding Jetpack Jumper!

Get introduced to coding by fixing a broken
game, then share it with your friends!

by TouchDevelop

first steps with turtle
Draw incredible drawings with the turtle!
by TouchDevelop

jumping bird
A tutorial to build a flappy bird clone.
by TouchDevelop

pixel art
Learn to create your own pixel art!
by TouchDevelop

©®

my scripts run

function main ()

& turtle — forward(200)

tap there
select that line

o ° tutorial: first steps with turtle

SUPER-COOL TURTLE

seript

touchdevelop

© privacy and cookies legal

This is the script editor. To run the program, click the run button. Clicking the + button will add a new
line. In this tutorial, the turtle goes forward by 200 meters. You can make the turtle go in difference

directions and also change the colour.

4| Page

SOCIAL

social showcase

] , -—-
ol o Forums More
UCL Team 52015 Y Give feedbacik
Vika Christy FaCEbOOk Contact us
x Join Group

9 Search here... the foru mS

the hub

comments

Hello everyone my name is Joery (Captain aﬁ Captaln Planet on Zion games

eMoticons in Motion
white FOX

zigzag puzzle
User37682

general issues everything

Planet) i'm not so familiar with coding outside

©of TD and hape to someda - Captain Planet Hello everyone my name is Joery (Captain Planet) i'm not so familiar with coding ouf]

13 minutes ago on Zion games of TD

#pullRequest fyoageebw fmikruyoo and hope to someday publish apps to the windows store, i look foward to meet the
groups community! ;D

-- peli@touchdevelop

13 minutes age on stcode tutorial 13 minutes ago : /eghswizh

adding missing (stauto} #publicationNotes Reply...
- peli@touchdevelop

13 minutes ag on stcode tutorial Q peli@touchdevelop on stcode tutorial
-

Tthink he meant the news vine .
#pullRequest /yoagcebw /mjkruyoo

-- Zion Games developer, Jared Gaitan

17 min on Zion a2 13 minutes age /quwnwspo

: adding missing {stauto} #publicationNotes
Meant Swedish

This is the form page, in this page you can ask questions and find solutions to your problems. In the
social page you can create groups and share your achievements in Facebook or twitter. So you and your
friends can edit each other’s code and most importantly brainstorming!

5|Page

categories

games

2747

libraries

tools
1208

entertimment

1633

education
967

productivity
629

Alien Bomb Run
Matthew Gas 154 %

See
More

-

-
Line Runner Dodge!
Quadcorn 486 % 24 = | Archie Godfrey 39w

Flappy Italians

Sixsouls

=
Flappy Bird
351 % 17 @ |j Ethan Stone 4w

New

Scripts

This section has the libraries where you see the programs created by other people. You can find a
range of functions in these libraries such as datatypes.

To create an app, click create script, then choose a blank template.

pick a script template...

n blank

blank game

blank app

beginners

blank turtle

cancel

6|Page

@ unusual app @ page main ()
SCript propertie publish data
@ add new action, eve

To add page data, create a local var and tap 'promote to field'.
pages do nothing

@ In > main

undo

my scripts

®

initialize

un

do nothing

end page

This is an example of blank app template. To create a new action click the plus button and click
action, then a function will be created

create a new ...

'kr\c ure resource

n € sound resource

see more options

cancel

Well, that’s pretty much it to help you start with touchdevelop! But just to make sure it sticks in your
brain, we’ll just go straight to some tutorials.

An action does a task. To create an action, click add new action, the click action. An action contains a
function which can be linked to the main function. To link the action to the main function you have to
add a line and type the name of the action in the search box and click the action.

7|1 Page

create a new ...

Type to search...

B> action()
Code that performs a specific task

@ picture resource

A picture from the web

X £ sound resource
A cound from the web

see more options

you can alse search

E exceptional app @

SCript properties

publish
add new action, event, ...
or evens, varizble, library reference, record

> do stuff()
an acticn

function do stuff ()

function main ()

e plate:empty}

emplatename:ADJ app}

8| Page

PART Il - FUNDAMENTAL MATERIALS OF COMPUTER SCIENCE

DATA TYPES (NUMBERS, STRING,
BOOLEAN)

A number can be of any value that is positive, negative or in decimals.

1

=. we have a Number here; it doesn't do anything by itself; use "post to wall' to display it
21

. we have a Number here; it doesn't do anything by itself; use 'post to wall' to display it

In the example above, we have a positive number, 1, and a positive decimal number, 2.1

-5
. we have a Number here; it doesn't do anything by itself; use 'post to wall' to display it

B

-3.9
% we have a Number here; it doesn't do anything by itself; use 'post to wall' to display it

In the example above, we have a negative number, -5, and a negative decimal number, -3.9

9|Page

action +(other : Number) returns Number
Adds numbers ~ Example: 3+3 =9 (This is the return value)

action /(other : Number) returns Number
Divides numbers Example: 10/5 = 2 (This is the return value)

action =(other : Number) returns Boolean
Compares numbers for equality Example: 4 = 4 -> True (This is the return boolean)

action >(other : Number) returns Boolean
Compares numbers for more orequal ~ Example : 4 > 5 -> False (This is the return boolean)

action >(other : Number) returns Boolean
Compares numbers for more Example : 10 > 2 -> True (This is the return boolean)

In the example above, we can perform different action with numbers such as addition, subtraction,
division or comparison.

STRINGS

Strings are pieces of text within the " "

var s := "thisis a string"

D

s:= "hello " || "world" Output : hello world

°

var count := s— count Count will have a value of : 16 (spaces are included!)

var first char := s— at(0) first char will have a value of "t"

o)

In the example above,
e We have a string text of "this is a string” that is saved in a variable called 's'.
e We can also concatenate (add) two or more strings together using the " | | " operator
e We can also count the length of the string using the "count” action. (Note that spaces are
included in the count value too!)

BOOLEANS (TRUE OR FALSE)

Booleans are "True" or "False”

vart := true

var f ;= false
®)

10| Page

In the example above, we declared a variable and assign the boolean value of "True" to 't' and "False” to

NOT OPERATOR

‘

e not true ==> false
e not false ==> true

We can convert a boolean from "True” to "False” using the "NOT" operator and vice versa!

AND OPERATOR

e true and false ==> false
e false and true ==> false
e false and false ==> falseé
e true and true ==> true

In the example above, we use the "AND" operator which takes two boolean and return a boolean.

AS A RULE OF THUMB, IF ANY OF THE BOOLEAN HAS A "FALSE", THE RESULT WILL AUTOMATICALLY
BE "FALSE", THE RESULT WILL ONLY BE "TRUE" WHEN THE TWO BOOLEANS ARE "TRUE".

OR operator

e true or false ==> true

e trueortrue==> true

IN THE EXAMPLE ABOVE, WE USE THE "OR" OPERATOR WHICH TAKES TWO BOOLEAN AND RETURN A
BOOLEAN.

AS A RULE OF THUMB, IF ANY OF THE BOOLEAN HAS A "TRUE", THE RESULT WILL AUTOMATICALLY
BE "TRUE" AS WELL, THE RESULT WILL ONLY BE "FALSE" WHEN BOTH BOOLEANS ARE "FALSE".

CONCLUSION

1. There are three basic data types, Number, String and Boolean!

1M |Page

2. These three data types are most commonly used in programming!

3. There are lots of different actions that you can apply to each data type! Explore it on your own!

VARIABLES (VAR)

A LOCAL VARIABLE IS A SYMBOL OR NAME THAT REPRESENTS A VALUE.

INTERACTIVE LESSON: http://tdev.ly/yrav

LET’S BEGIN!

Example :

varx:=0

First, we declare a variable 'x" and assign a value of 0 to it.

X — post to wall

Second, we output the value of 'x' so that the user will be able to see it.
In this case, the output will be 0.

X:=2

X — post to wall D
L

We can update the value of 'x' by using the := operator and assign a new value to it.
In this case, we assign the value of 2 to 'x' and show the output.

X:=X+X

x — post to wall D
L

We can use variables to add to another variable or itself!
In this case, we add 'x' to itself and update the new value to 'x'.
The output of X will be 2+2 = 4

12| Page

http://tdev.ly/yrav

var z:= X

We can create a new variable and assign the value of another variable to the new variable.
In this case, we create a new variable 'z’ and assign the value of 'x' to it!

var y := "Hello world "

— post to wall
y—=»p

Variables can also be used for Strings or Actions where the action's data can be saved!
In the above example, we create a variable 'y’ and assigned a string of "Hello World" to it.

y =X

® cannot assign from Number to String

However, do take note that variables of different type cannot be assigned to each other!
In the above example, 'y’ has a type of String and 'x’ has a type of Number.

CONCLUSION

1. A variable is a symbol or name that represents a value.
2. Values can be of different data type such as Number, String, Boolean (True / False) and more!
3. Variables makes programming more efficient because data can be accessed and updated easily!

4. Variables of different type cannot be assigned to each other!

INVALID VALUES

Here’s the link to the tutorial: http://tdev.ly/qapjc

CREATING A VARIABLE

To understand what an Invalid Value does, we need to first create a variable and make it ask a number.
To do this you have to create a variable then by going to wall, then ask number, you make the program
to ask you enter a number.

13| Page

function #0 main ()

Let create a variable and assign the Invalid value

(code of the step)

var x := wall = ask number("")

Now we need to check if this is an invalid value, so we need to use the function is invalid. This returns
true or false. It will return true is the variable is invalid and false otherwise. We need to create another
variable to store the Boolean value (True/False). To do this create a variable then in the keypad click
the variable name of the previous variable you created. For example if you have name the x, then the x
should appear on the keypad. Now click x then click is invalid.

(code of the step)

var p := x— Is invalid

Now we need to print this. To do this click the name of the variable in the keypad, then click post to
wall or you could type it in the search box in the left corner of the screen.

(code of the step)

p — post to wall

Now run the program by clicking the play button. In the textbook don’t enter anything and press ok. If
the program displays true then it’s working.

true

function main ()

enter a decimal number
var x := wall — ask number("")

p— post to wall
nd

Now run the program again, this time enter a value the result should be false.

14| Page

false
function main ()

var x := wall —» ask number("")

var p := x— is invalid

p— post to wall

USER INPUT (UI)

USER INPUT ALLOWS US TO GET INFORMATION WE NEED FROM USERS!

INTERACTIVE TUTORIAL : http://tdev.ly/ubfga

We will learn how to get an input from the user using the "Wall" service in TouchDevelop!

User input is an essential part of programming because it makes a program interactive by asking input

from the user!

We will take a look on how we are able to request for an input from the user in TouchDevelop!

USING 'ASK STRING'

var name := wall — ask string("What is your name?")

Equivalent output

User input here!

What is your name?

OK

In the above example, we created a variable called 'name’ and assign the 'Wall -> ask string(string

input) service.

The 'name’ variable saves the user input so we are able to access it later on in the program!

15| Page

http://tdev.ly/ubfqa

|var greetuser := ("Hello " I name)

reetuser — post to wall
lg p

In the example above, we create a new variable 'greetuser’, which concatenate (add) two strings
together using the "| | " operator.
The result of greetuser will be "Hello ‘user’s input’ ".

USING "ASK NUMBER'

| var age := wall = ask number("What is your age?")

| var age_output := ("Your age is " Il age)

Equivalent output

enter a decimal number

In this example, we ask the user for his/her age and save it in a variable called 'age'.
We then use the data stored in 'age’ to create a new string variable 'age_output'!

USING "'ASK BOOLEAN’

var answer := wall = ask boolean("Is programming fun?”, "Yes or
NOII)

Equivalent output

In this example, we ask the user if he/she fun programming fun and the answer is either a 'Yes' or 'No'.
However do take note that the value 'answer’ stores will be either a 'True' or 'False' and not 'Yes' or 'No'

16 | Page

USING 'PICK DATE'

var date := wall — pick date("When is your birthday?", "pick a
date")

Equivalent output

When is your birthday?
pick a date

dd/mm/yyyy

oK

In this example above, we used the 'pick date’ services to get our user to input his/her birthday and we
save it in a variable 'date’.

CONCLUSION

1. User Input is important because it makes your program interactive!

2. You can request information that you need from the user!

3. We can choose a variety of actions from 'Wall' to request an information from the user such as:
e ask string

ask number

ask boolean (True or false)

pick date (Allow user to pick a date in the format of 'mm/dd/yy')

pick time

pick string (Different from ‘ask string')

There are more actions that ‘'Wall' can provide and you should explore it on your own!

IF AND ELSE IF

This tutorial will teach you about using if and else if statements.

Here is the link to the tutorial for ‘if’ on TouchDevelop: http://tdev.ly/ympbwwyt

Here is the link to the tutorial for ‘else if on TouchDevelop: hitp://tdev.ly/sbav

IF STATEMENT

The way that ‘IF statements’ works, is that it will take a value and see if it fulfills a condition that is
chosen and gives the result if it does.

17| Page

http://tdev.ly/ympbwwyt
http://tdev.ly/sbav

IMPORTANT: The order of the conditions that we use in IF statements are very important. The program
will test the conditions in the order that is written, so we must test the more restrictive conditions
first.

To use ‘if statements’, firstly, we should enter a value that we want the statement to evaluate. For
example, we can assign a variable to equal 15.

varx:=5

Next, we will enter the IF statement; lets make the IF statement tell us whether or not the number is
greater than 10. We can do it like this:

if x> 10 then
"X is greater than ten!"— post to wall

The line of code that is indented and the line below the IF statement tells the program what to do if
the condition fulfilled. In this case, when the program is run, the text, “X is greater than 10!” will be
posted to the wall.

That’s all well and good, but what if our number was less than or equal to ten? We can then use the
second part of the IF statement syntax, called ‘else’. This covers all the cases where the IF statement
is not fulfilled.

In TouchDevelop, the ELSE statement is automatically included, and the default code is to ‘do
nothing’. For our example, you can add to the code, so that it posts to the wall saying “x is not greater
than 10!” like this:

else

"X is not greater than ten!"— post to wall

And there we have it, if statements in a nutshell!

There is also an additional function that can be used alongside IF statements f you want to have more
than one condition to test.

The way that ELSE IF statements are used are similar to IF statements that you have learnt already.
The only thing that is different is that ELSE IF statements come after the first IF, to test more
conditions.

Let’s go through an example to make this clearer. We will write a program that asks the user to input a
mark for a test, and the program will post to the wall, the grade that the user inputted.

The grades are as follows: A - 70 and above, B - 55 and above, C - 40 and above, Fail - below 40.

18| Page

First we need to create the variable to store the mark that the user inputs.

var X := wall— ask number("What is the mark?")

We then create the first IF statement as follows:

if x> 70 then
"Wow! That's an Al" — post to wall

Because we need other conditions for the rest of the grades, this is where ELSE IF comes in. It is used
in the same format as IF, but with the word ELSE included. For the grade B condition, this is how we
would implement it:

else if x = 55 then
"That's a B!"— post to wall

We can use the ELSE IF statements for the rest of the program as follows:

else if x = 40 then
"Thats's a C!"— post to wall

And for the last statement, you do not need an ELSE IF, you can simply use the ELSE statement, as it
will cover the rest of the conditions.

else
"Sorry, that mark is not a pass..." = post to wall

That is the basic concept of using IF and ELSE IF statements!

Do the exercises to practice using what you have learnt!

This tutorial will teach you about operators. Operators are symbols that are used to represent an
actions used in programming.

Here is the link to the tutorial on TouchDevelop:

Assignment operators are used to assign different types of variables to something. For example, you
can assign a nhumber x to equal 1. The symbol we use in TouchDevelop to assign a variable to a value
is :=.

Here is an example of what the code would look like on TouchDevelop:

19| Page

http://tdev.ly/qwausldq

We can use the same operator to update the value of a variable. For example, we can re-assign the
variable x to equal 9.

X:=9

Note: When we update the value of a variable we do not need to declare the variable again using the
‘var’ feature.

CONCATENATION OPERATOR

Concatenation is when you join two things together.

In TouchDevelop, we use | | to symbolize the concatenation operator. This takes two values of any
type, converts them into string variables and then joins them together.

We can try this out. Firstly, create two different string variables and then use the operator to join the
two strings together.

Here is an example that concatenates the two strings “hello” and “world” and posts it to the wall.

var s := "hello"
var s2 = "world"

ARITHMETIC OPERATORS

Arithmetic operators are used to do the simple mathematics operations that we learn. There are 5
main ones that we use in TouchDevelop. They are shown in the table below.

Arithmetic operators operate on number variables and they also return number variables.

Operator What it means...

+ Adds the number variables together

- Subtracts the number variables

* Multiplies the number variables

/ Divides the number variables

20| Page

math -> mod (x, y) | Calculates the remainder when the number variable x is divided by the number
variable y.

If we create two number variables x and y in the program, we can try these operators. Assign the two
variables to any values, for example 9 and 3.

Then, we can add the two numbers together and post it to the wall like this:

(X + y)— post to wall

Note: Remember the brackets when using these operators! Otherwise, the computer will get confused,
and there will be an error when you run the code.

As with the ‘+’ operator, the ‘-‘ operator can be used in the same format. However, we can assign the
result of using an arithmetic operator to a new variable. Look at this example:

varz:=(X-vy)

Here, we have assigned a new variable, z, to the result of (x - y). We can treat this new variable as any
other it can be used later on in the code.

The rest of the arithmetic operators are also used in the same way and format as the ‘+’ and ‘-’
operators. You can practice using these arithmetic operators if you create a new blank script on
TouchDevelop.

Additionally, there are a lot of other mathematical operators that can be used. You can find these
when you click on the ‘math’ button on the TouchDevelop software.

RELATIONAL OPERATORS

A relational operator is used to compare two different number variables and then returns a boolean
value (true or false).

There are 6 different relational operators; they are shown in the table below.

Operator What it means...
= Equality - returns true if the two numbers are equal
= Inequality - returns true if the two numbers are not equal
< Returns true if the first value is less than or equal the second value
< Returns true if the first value is less than the second value
> Returns true if the first value is more than or equal the second value
> Returns true if the first value is more than the second value

21| Page

The way that these operators are used is very similar to the arithmetic operators. Here is an example
of using the ‘=’ operator.

(x # y)— post to wall

In the example above, we are comparing the two number variables x and y. In this case, if they are
equal, then the program will return ‘false’, but if they are not equal, the program will return ‘true’.

All the relational operators are used in the same way as the ‘=’ operator, so you can also practice using
them in by creating your own blank script.

BOOLEAN OPERATORS

Boolean operators operate on booleans and also return a boolean (true or false). There are 3 boolean
operators used with TouchDevelop; they are shown in the table below.

Operator What it means...
not This acts as an inverter. For example 'not clown'. If something is a clown, it will
return false. But if something is not a clown, it will return true.
and This will return true if both conditions are true.
or This will true if either one or both conditions are true.

These operators are commonly used in if statements, so you will learn more about how to use these in
the ‘if’ tutorial.

COMMENTING

Comments are lines of code that contains explanation or notes left by the coder. If a line of code is
‘commented out’ it will not be executed when the program is run.

Comments can be useful when someone who did not write the code is trying to understand what the
program does.

To comment out some code in TouchDevelop, you can follow these steps:

1. Click on the line of code that you want to comment out.
2. A bubble that says ‘select’ will appear on the right hand side of the line of code. Click this.

| S S N

end action @

select

22 |Page

3. A new side tab will appear and at the bottom, you will find a button that says ‘comment out’.
If you click this, the line of code that you have selected will be commented out with a
statement that says ‘if false then’.

—_—

| do nothing ¢

clipboard end action

‘ cut selection ‘ ‘ copy selection ‘

delete selection

extract selection into action

do stuff

surround with

if ‘ ‘ for I

‘ for each H while ‘

‘ boxed ‘ ‘ comment out ‘

4. To uncomment a statement, there will be a button that says ‘uncomment out’.

You can create a text comment by clicking the ‘//comment’ button and then going through the process
1-4 again.

| | ~— ~— —

end action @

select

var if for foreach while // comment »

new variable conditional repeat code simple loop insert comment more

23 | Page

This tutorial will teach you about using if and else if statements.
Here is the link to the tutorial for ‘if’ on TouchDevelop:

Here is the link to the tutorial for ‘else if on TouchDevelop:

The way that ‘IF statements’ works, is that it will take a value and see if it fulfills a condition that is
chosen and gives the result if it does.

IMPORTANT: The order of the conditions that we use in IF statements are very important. The program
will test the conditions in the order that is written, so we must test the more restrictive conditions
first.

To use ‘if statements’, firstly, we should enter a value that we want the statement to evaluate. For
example, we can assign a variable to equal 15.

varx:=5

Next, we will enter the IF statement; lets make the IF statement tell us whether or not the number is
greater than 10. We can do it like this:

if x> 10 then
"X is greater than ten!"— post to wall

The line of code that is indented and the line below the IF statement tells the program what to do if
the condition fulfilled. In this case, when the program is run, the text, “X is greater than 10!” will be
posted to the wall.

That’s all well and good, but what if our number was less than or equal to ten? We can then use the
second part of the IF statement syntax, called ‘else’. This covers all the cases where the IF statement
is not fulfilled.

In TouchDevelop, the ELSE statement is automatically included, and the default code is to ‘do
nothing’. For our example, you can add to the code, so that it posts to the wall saying “x is not greater
than 10!” like this:

else
"X is not greater than ten!"— post to wall

24 | Page

http://tdev.ly/ympbwwyt
http://tdev.ly/sbav

And there we have it, if statements in a nutshell!

There is also an additional function that can be used alongside IF statements f you want to have more
than one condition to test.

The way that ELSE IF statements are used are similar to IF statements that you have learnt already.
The only thing that is different is that ELSE IF statements come after the first IF, to test more
conditions.

Let’s go through an example to make this clearer. We will write a program that asks the user to input a
mark for a test, and the program will post to the wall, the grade that the user inputted.

The grades are as follows: A - 70 and above, B - 55 and above, C - 40 and above, Fail - below 40.

First we need to create the variable to store the mark that the user inputs.

var X := wall— ask number("What is the mark?")

We then create the first IF statement as follows:

if x> 70 then
"Wow! That's an Al" — post to wall

Because we need other conditions for the rest of the grades, this is where ELSE IF comes in. It is used
in the same format as IF, but with the word ELSE included. For the grade B condition, this is how we
would implement it:

else if x = 55 then
"That's a B!"— post to wall

We can use the ELSE IF statements for the rest of the program as follows:

else if x = 40 then
"Thats's a C!"— post to wall

And for the last statement, you do not need an ELSE IF, you can simply use the ELSE statement, as it
will cover the rest of the conditions.

else
"Sorry, that mark is not a pass..." = post to wall

That is the basic concept of using IF and ELSE IF statements!

Do the exercises to practice using what you have learnt!

25| Page

LOOPS (FOR AND WHILE)

MOVING OBJECT

To get you started, we’re going to begin with how to make an object moves. Let say in this case we want
to make a clown moves.

(code of the step) This is to make the clown facing left, the number inside the brcket is
the angle of Clown's movement to the left

(;c'.‘.v clown — left turn(45)

éc‘.‘.v clown — forward(100)

Now try this one on your own! The clown will now moves in 45 degree to the left with the length of 100
moves. We are now wondering, if we want to make multiple moves, we need to write a lot of code to
place the clown to move from one place to another, individually. But lucky for us, we have a shortcut
called Loops.

There are different kind of loops, such as for and while. Let’s start off with for loop.

FOR LOOP

Here is the link to the tutorial on TouchDevelop. http://tdev.ly/euxle

For statement can be used to execute a line of code into a desired number of times. For example, rather
than commanding the clown to moves 3 times to make an octagon, we can just use for loop and perform
it 8 times:

This loop is to perform the action all over again
forO<i<8do
| The steps are split using a depth-first-search strategy.

cl_ ¢ clown — left turn(45)
C!;. & clown — forward(100)
| Run your program: This is how the clown moves

end for

In this example, ‘i’ is acting as a random variable just to store how many time we want to perform the
code. Now try it by yourself in your tablets!

26| Page

http://tdev.ly/euxle

WHILE LOOP

Here is the link to the tutorial on TouchDevelop. http:/tdev.ly/acrfg

We can implement the exact same thing as for loop by using a while loop. The only difference is while
loop is using a stored variable on top of the actual loop. We’ll start introducing the variable, then perform
the while loop

| var index := 7
while index = 0 do
;.|: & turtleZ2 — left turn(45)
_,.|: & turtle2 — forward(100)
| index := index - 1

end while

end action

Whoops, but wait, we want an 8-sided trail, why is it only 7? Well, take a look at the symbol there. We
start counting from 0 instead of 1. Now try it by yourself and try out countless shapes that you can think
of!

27 |Page

http://tdev.ly/acrfg

PART Ill - MEET THE ENGDUINO

What is the Engduino? Well, it’s a nifty little computer that you can program to do the things that you
want it to do, with an array of sensors, LED’s and other little gizmos to play around and do cool things

with.

Without further ado, let’s introduce the Engduino (the Engduino 3, to be precise) and some of its
hardware.

Key chain hole

On/Off
Switch

Charging
LED

USB Connector

Figure 2: The front side of the Engduino V3. Neat.

On the front side of the Engduino you have:

- Aset of 16 LED’s that can light up in pretty much any colour you want them to.
- A key chain hole, if you’re into that sort of thing.

- Athermistor, for taking temperature readings.

- Alight sensor, for taking readings of how much light is falling on it.

- An LED that shows if the Engduino battery is charging.

- A USB plug for sticking the Engduino into your PC or Mac.

- An On/Off switch, which I really shouldn’t have to explain to you.

Thermistor

Light sensor

28| Page

ATMega32u4
microprocessor

Accelerometer
Micro-SD

Magnetometer | Card slot

Reset @ Infrared
button \ t E [
ii " transmitter
e B ¥ 7
On/off I : $2

Switch ‘ T3
v Inag
User
button

3.6V Li-ion battery

Expansion bus

Figure 3: The rear side of the Engduino V3. It's a bit messy back here.

Flip the Engduino over and you’ll find:

The processor and the other weird technical stuff.

A Micro-SD card slot for Micro-SD cards (and nothing else!)

A 3.6V Lithium-lon battery to power the thing.

A user button. What does it do? That’s for you to decide.

A reset button. This resets the Engduino to its factory settings, don’t press this unless you
really need to, seriously.

An infrared transmitter to transmit infrared stuff.

An accelerometer to measure the acceleration of the Engduino.

A magnetometer to measure magnetic field strength, perfect for calibrating the magnets on
your giant city-destroying railgun.

An expansion bus, for interfacing with other hardware.

29| Page

WHAT IS THE ENGDUINO USED FOR?

The Engduino is a great toy for beginner programmers to play around with. The variety of sensors and
other features can be used in various different ways, and it good fun to come up with new things for it
to do. Its excellent programming practise, a lot more interesting than mucking about with dusty old
text output on a computer, and a good way of being introduced to the more practical ways of
programming.

Here are some of the great, life-changing things that you could do with the Engduino:

- Have the LED’s light in sequence to form a timer.

- Have the LED’s change colour depending on the temperature read by the thermistor.

- Turn the Engduino into a spirit level, with the LED’s lighting a pattern representative of the
Engduino’s current orientation.

- Make your weekends less boring by turning the Engduino into a budget disco machine; where all
the LED’s will flash randomly in randomised colours.

There are of course many other things that you could do, the only limit is your creativity (and of
course, the Engduino itself). You could modify some of the ideas above to incorporate other pieces of
the Engduino’s hardware, such as having the LED timer stop when the button is pressed, for example.

FOR AND WHILE LOOPS

Let’s try and implement some of the programming knowledge we learned earlier with the Engduino,
specifically For and While loops.

FOR LOOP

30| Page

Let’s begin with a For loop - Since each LED on the Engduino has its own unique ID, we can refer to
them via each iteration of a For loop. In this example, we’ll make each LED light in sequence, with all
the lights turning off at the end:

action main ()

This action emulates the code loop in the bug and will not be compiled.

do nothing

> setup

for0<i<17do

¢¥ engduino — set LED(i, colors — blue)
. time — sleep(1)
end for

time — sleep(1)
. € engduino — set all LEDs(colors — black)

end action

Let’s break it down:

We set up a For loop for when i, our For loop’s local counter variable, is less than 17, meaning
that the loop will execute for each value of i up to and including 16.

In the body of the For loop, the Engduino will illuminate the LED with the ID of the current
value of i, then sleep for a second (so that the lights illuminate at a noticeable pace).

This process repeats itself until i = 17, at which point all 16 LEDs will be illuminated, and the
For loop will end.

After the for loop ends, all of the LEDs will turn off.

Now try modifying this example, here are some exercises to get you started:

1.

Make the entire process repeat itself. I.e. when the LEDs all turn off, they will begin lighting

again, and so on.
Turn the Engduino into a two-part minute timer: with ten of the LED’s representing seconds,
and the remaining six representing tens of seconds. You’ll need to use nested For loops for this

one.

31| Page

WHILE LOOP

This example will be a bit different: instead of having each LED turn off (and stay on) in sequence, we
will have a perpetual While loop check if the Engduino’s button has been pressed, turning the LED’s on
(or off) if it is pressed:

action main ()
This action emulates the code loop in the bug and will not be compiled.
do nothing
J)D setup
var lights := 0
do nothing
while true do
(Igif ¢¥ engduino — button was pressed then
if lights = 0 then
lights := 1
+ & engduino — set all LEDs(colors — blue)
else if lights = 1 then
lights:= 0
- twengduino — set all LEDs(colors — black)

else do nothing end if

else do nothing end if
end while

|C!>€)engduino — set all LEDs(colors — black)
end action

32| Page

Let’s break it down:

- We initialise a variable to keep track of whether the LEDs are currently on or off.

- We set up a While loop with true set as the argument. What this will do is making the While
loop to repeat indefinitely, if/until a statement in the loop body cancels (breaks) it.

- Each time this loop executes, it will check to see if the Engduino’s user button has been
pressed.

- If it has, it will change our LED variable to O if it is currently 1, or to 1 if it is currently 0, and
turn the LEDs on or off accordingly.

- The only way to terminate the While loop in this instance would be to turn off the Engduino.

Now try modifying this example, here are some exercises to get you started:

1. Have pressing the button change the colour of the LEDs change if they are already turned on.

2. If you’re up for a challenge; integrate the previous exercise into this one and create a program
where the For loop in the previous exercise will be terminated if the Engduino button is
pressed. l.e. the LEDs will turn on in sequence until the button is pressed. Good luck!

BUTTON

And now let's learn about how to use the button that's on the back of your engduino, you can basically
implement the button to any of your project, so let's get started:

FUNCTIONS

1. Button pressed

2. Button was pressed

BUTTON PRESSED

This function tells the user if the button is currently pressed. It returns a Boolean value. It returns true
if the button is pressed, false if it is not pressed. For example the program below has an if statement.
It will execute if the button is pressed and the LED’s colour will turn to red. If the button is released
the if statement condition will become false so the LED’s will turn off by setting the colour to black.

while (true) {
éif (€% engduino — button pressed) {
- & engduino — set all LEDs(colors — red)
} else {

. & engduino — set all LEDs(colors — black)

33| Page

BUTTON WAS PRESSED

This function tells the user if the button was pressed. It returns a Boolean value. For example in the
program below if the button is pressed then the LED’s will turn to red and won’t turn off like the
button pressed function.

w.hile (true) {

. if (& engduino — button was pressed) {
- engduino — set all LEDs(colors — red)

Exercises

1. Make the Engduino to change the colour when the button is pressed twice

2. Make the Engduino to set a colour if the button is pressed

LEDS

Now we're going to learn about to set up colors of the LEDs that will be displayed on your engduino

SET COLOUR OF ALL LEDS

You can set the colour of all the LED’s at the same time, by using ‘set all LED’.

Here is an example where the colour is random, using TouchDevelop:

|| ©engduino— set all LEDs(colors— random)

To set the LEDs to a specific colour, instead of ‘random’, change this to the other colours available
that are on TouchDevelop, which are red, green, white, blue, orange, dark grey, grey, light grey
and yellow.

E.g. Setting all the LEDs to green.

34| Page

|| ©engduino— set all LEDs(colors— green)

Set the colour to black to switch the LEDs OFF.

SETTING A SINGLE LED

You can set the colour of a single LED, by using ‘set LED(LED number, colour)’.

The number of the LED is labelled on the Engduino, from 1-16. Note: LED 0 is on the side of the
Engduino.

Here is an example where LED 1 is set to red:

|| &¥engduino— set LED(1, colors— red)

You can also use the ‘colors = from rgb(r, g, b)’ function to use other colours. Here is the link, where
you can find the RGB values for different colours:
http://www.rapidtables.com/web/color/RGB_Color.htm

USING LOOPS

If you wanted to set the odd numbered LEDs to red and even numbered LEDs to green, then instead of
listing out each one individually, you can use loops!

Here is how you would do this:

35|Page

http://www.rapidtables.com/web/color/RGB_Color.htm

forO<i<17do
. €¥engduino— set LED(0, colors— black)
if math— mod(j, 2) = 0 then
|® <eengduino— set LED(i, colors— green)
else
+&eengduino— set LED(i, colors— red)
end if
end for

The ‘for’ loop always starts at 0, and it goes up to 17 so that it includes all 16 LEDs. We first set LED 0
to black, as we do not want this one to be on (it is the small LED on the side).

We use the ‘math - mod’ function and an ‘if statement’ to separate the odd even and odd numbers
(the remainder of an even number divided by 2 would equal to 0, whereas odd number divided by 2
would give a remainder).

Here is the result:

ACCELEROMETER

The accelerometer on the Engduino measures the acceleration on the Engduino. It is able to measure
acceleration in three dimension (In 3-Axis known as X,Y,Z)

36| Page

X-Axis

In this Engduino lesson, we will be covering the following point,

e Storing the accelerometer readings into a variable.
¢ Read and understand the accelerometer readings in Engduino.
e Using the accelerometer readings to perform different task.

37| Page

STORE ACCELEROMETER READINGS

In order for us to read the accelerometer readings, we need to store the accelerometer readings into a
variable first.

while true do
+>loop

(code of the step) We will store the accelerometer value into a variable

L var axis := ¢y engduino — acceleration
end while
In the codes above, we stored the engduino accelerometer readings into a variable called "axis’

*Note that the variable 'axis’ will store 3 different values(X,Y,Z) with one single line of code.

READ ACCELEROMETER READINGS

To get the readings of the Engduino, we simply output the variable containing the readings of the
accelerometer.

var axis := ¢ engduino — acceleration
axis — post to wall

Output

(0.0168469,-0.124751,0.991898)
(0.0156674,-0.121104,0.992375)
(0.00000,1.00000,0.00000)

(0.00000,1.00000,0.00000)
(X value, Y value, Z value)

When you run the codes, you will get the above output. The readings shows the Engduino
accelerometer readings in term of (X, Y, Z). The highest and lowest value that X,Y,Z can get is +1.

*Note that the Y-axis reading is 1.0 by default? That's because of gravity acting downwards relative to
the Engduino.

38| Page

We can also read the value of X, Y, Z individually using the codes below

var axis := {¥engduino — acceleration
axis —» x — post to wall
axis — y — post to wall

axis —» z — post to wall

USING ACCELEROMETER READING TO PERFORM AN ACTION

Now that we know how to get the accelerometer readings, we will use the readings along with 'if/else’
statement to perform different actions.

while true do
s> loop
(code of the step) We will store the accelerometer value into a variable
4var axis := € engduino — acceleration
if axis— x > 0.5 then
+ & engduino — set all LEDs(colors — blue)
else if axis— x < - 0.5 then

+ & engduino — set all LEDs(colors — red)
else

|®€3engduino — set all LEDs(colors — white)
end if

end while

In the code above, we use the accelerometer X-axis reading to change the LEDs colour on the
Engduino. The LEDs will become blue when the accelerometer X-axis reading is above 0.5.

39| Page

If the accelerometer X-axis reading is between -0.5 and 0.5 (-0.5 < X < 0.5), the LEDs will become

When X-axis reading is above 0.5 (Move right)

40 | Page

When X-axis reading is between -0.5 and 0.5

When X-axis reading is below -0.5 (Move left)

41| Page

CONCLUSION

1. Accelerometer on the Engduino measures three dimension of acceleration.
2. Readings stored in a variable can be shown as (X, Y, Z) or as individual axis reading.
3. Using individual axis-reading, we can perform a variety of actions.

SUMMARY GAME |[WORLD CUP FLAGS

Who doesn’t love the world cup? In this mini quiz, we’re going to combine all of the Engduino exercises
before (Accelerometer, LEDs, loops, etc) to make an awesome Engduino world cup flags display. Let’s
four of your favorite countries and display their country flag into our Engduino pad LEDs. Let’s say
these are your favorite teams from world cup: Spain, France, Italy and England.

- BB

Spain Italy France England

To display four of the flags, let’s set up Spain flag when we’re tilting to the left, Italy to the top,
France to the right and England to the bottom.

SETTING UP THE LED

The First step is to set up the LEDs for all four countries. Let’s take Spain flag as the example. In order
to make a Spanish flag, we need two different LEDs colors which is yellow at the middle and two arrays
of reds at the top and bottom. In this case, we’re going to take Engduino green pad as the example
(since every Engduino pads has different numbering system).

Let’s set up LEDs number 1,2,4,6,7 and 0 and LEDs number 9 to 15 using if condition into red lighting
and the rest to yellow. Maybe some of you are wondering, why can’t we use for loop in this case. In
other language, indeed we can use for loop to set up LEDs from 9 to 15 but since TouchDevelop can
only support loop that starts from 0, we have to use if condition as the substitute. Let’s take a look at
the real code:

42 | Page

for0<i<17do
ifi=1ori=2ori=4ori=6o0ri=7ori=0then
4 €¥engduino — set LED(i, colors — red)
else ifi > 9and i < 15 then
4 €¥engduino — set LED(i, colors — red)
else
4 €¥engduino — set LED(i, colors — yellow)
end if
end for
As you can see, we can use if condition to make the code more simple than writing it one by one. As
we expected, this is the display of the Engduino on the emulator:

COMBINING THE LEDS AND ACCELEROMETER

Now, the second step is when you tilt the Engduino to the right, it shows the Spanish flag, and leave
the rest to black. The way to do it is very simple, just wrap all of our code that we just made with if

statement.

43 | Page

action main ()
| This action emulates the code loop in the bug and will not be compiled.
while true do
| var axis := €y engduino — acceleration
if axis — x > 0.5 then
for0<i<17do
ifi=lori=2ori=4ori=6ori=7ori=0then
_J;aengduino — set LED(}, colors — red)
elseifi>9andi < 15 then
;-!=€5engduino—= set LED(i, colors — red)
else
.-|..:'5 engduino — set LED(i, colors — yellow)
end if
end for
else

I_J, & engduino — set all LEDs(colors — black)
end if

end while
.‘-!, > setup
end action

When you’re testing it to the Engduino, you can see that the flag only shows up when we tilt the pad to
the right and when it’s down to any other direction, all of the LEDs are off.

MULTIPLE FLAGS!

So, how about adding another flags to the pad?

44 | Page

We’re going to visit our old pal else if in this one. Let’s say we want to add the French flag when we
want to tilt to the left. At the end of our previous code, instead of just closing it with else, we can add
else if to input our French flag code. Here’s how it goes:

action main ()
This action emulates the code loop in the bug and will not be compiled.
while true do
var axis := & engduino — acceleration
if axis — x > 0.5 then
forO<i<17do
ifi=1ori=2o0ri=4ori=6o0ri=7ori=0then
& engduino — set LED(, colors — red)
elseifi > 9andi < 15 then
& engduino — set LED(i, colors — red)
else
& engduino — set LED(), colors — yellow)
end if
end for
else if axis — x < - 0.5 then
for0<j< 17 do
ifj=10rj=2o0rj=0then
& engduino = set LED(), colors — blue)
elseif j > 13 and j < 17 then
@& engduino — set LED(j, colors — blue)
elseif j > 5and j < 11 then
& engduino — set LED(j, colors — red)
else
& engduino — set LED(], colors — white)
end if
end for
else do nothing end if
end while
> setup

end action

WIS Mhirrnrnf mrbian e

As you can see, this code contains two different flag tilts, here’s the final result on the emulator:

Tilt to the left Tilt to the right

45 | Page

QUICK EXERCISES

1. Now you can finish up all the four sides with the rest of the flag by using all the statements
mentioned before!
2. Add the button function so that the lights only emit when the button is pressed

FINAL PROJECT

ENGDUINO RACE (STEP COUNTER)

In this tutorial, we will teach you to write the code to make an Engduino race meter! Let’s call our
little Engduino race meter a Pedometer.

Our Pedometer will count the number of steps the user take and light up the Engduino’'s LED according
to the number of steps he/she takes! So at the end of the race you and your friends can take a healthy
run then compare to each other who wins the race by counting the total of LEDs lights that lit!

We are able to use the Engduino to create a simple Pedometer by using the accelerometer on the
Engduino. The Pedometer counts the number of steps the user takes by calculating the acceleration
from the Engduino.

GETTING STARTED!

Before we can create our Pedometer, we have to set up the script first!

Create
Script

First, click on "Create Script”

46 | Page

pick a script template...

search templates

blank arduino
An empty Arduino sketch
blank esplora

An empty Arduine Esplora script.

. blank engduino <:| Click this

An empty Engduino script.

Next, click on "blank engduino”

blank engduino
An empty Engduino script.

Name your new script as "Pedometer” and click create

47 | Page

action main ()
Pedometer
¢ sript propertie | This action emulates the code loop in the bug and will not be compiled.
script perties
publish
my scripts ® B> setup
@ @ while true do
arduino upload serial moniter A
end while
run add new action, event, ... end action
or event, variable, library reference, record

(2

code

>main() @
@ This action emulates the code lot

run

split 0
p > loop() Click this
@ an action
B> setup()
© an action
B> variables()
@ an action

This is the main page of your script! But before we start coding, we need to delete some codes from
the template!

undo

@)

Pedometer

"G script properties

| private action loop () |<:: Click this

I & engduino — set all LEDs(colors — random)
publich L € engduino — delay(200)
@ @ + € engduino — set all LEDs(colors — black)
+ € engduino — delay(200)
end action

®

my scripts
arduinc upload serial monitor
un add new action, event, ...

or event, variable, library reference, record

> main() @
@ This action emulates the code loc

run

OO

undo

®

split > |OOp

O an action

> setup()
@ an action
n > variables()

O an action

Click on the "private action loop()" to bring up the menu to delete the loop function.

48 | Page

O

dismiss

5

undo

@

split

action

loop

private action

Private actions do not get a run button.

D ‘atomic' action

add input parameter
create a new parameter

add output parameter
Create a new parameter

cut

copy

delete

Ready for more options? Change skill level!

more info

<:| Clck this

private action loop ()
CL('.‘. engduino — set all LEDs(colors — random)
éc‘; engduino — delay(200)
CL(‘& engduino — set all LEDs(colors — black)
Ac‘; engduino — delay(200)

end action

Click on "delete" to delete the function.

)

my scripts

@

run

)

undo

®

split

i

®

= Pedometer

script properties

©

arduino upload serial moritor

add new action, event, ...

publish

©

or event, variable, liorary reference, record

code

@ [>main()

@ This action emulates the code loc

> setup()

Q@ an action

> variables()

@ an action

run

action main ()
| This action emulates the code loop in the bug and will not be compiled.
> setup
while true do
| > — loop
@ i cannot find property 'loop' on code
end while
end action

You will be redirected to the Main function. Click on loop statement and delete it from the codes.

LET'S START CODING OUR PEDOMETER!

49 | Page

action main ()
- D> setup
var counter:=0

We declare a counter variable to count the number of steps the user has taken in total

Create a variable and rename it to "counter” and initialise it to O.

action main ()
> setup
var counter:= 0

We declare a counter variable to count the number of steps the user has taken in total

while true do
+var p := € engduino — acceleration

Next we create a variable "p" and assign it with the Engduino’s accelerometer!

action main ()
- > setup

var counter:=0

We declare a counter variable to count the number of steps the user has taken in total

while true do

Lvar p:= ¢¥engduino — acceleration

varx .= p—X
vary:=p-y
varZ =p—=Z
We assign 3 different variables to store our XY and Z values of the Engduino’s Accelerometer

Next, we store the accelerometer’s X,Y and Z readings to 3 variables.

50| Page

action main ()
| > setup
var counter:= 0
We declare a counter variable to count the number of steps the user has taken in total
while true do
var p := é»engduino — acceleration
varx:=p-—xX
vary:=p-y
varz'=p—12%Z

We assign 3 different variables to store our XY and Z values of the Engduino's Accelerometer
var acceleration:=x*x+y*y+z*z
acceleration := math — sqrt(acceleration)

In order to calculate the acceleration from the Engduino, we have to sum the square of xy,z and square root
the summation
We create a new variable "acceleration” which sums the square of X,Y and Z.
We then square root the summation to get the real acceleration.
The acceleration formula is given as :

Acceleration = \/x2 + y? + z?

The acceleration formula calculates the user's acceleration by using all 3 axis of the accelerometer to
determine if the user has taken a step

*Note that this calculation is not the real way of how an actual pedometer calculates a step!

51 | Page

action main ()
% > setup
|var counter:=0
| We declare a counter variable to count the number of steps the user has taken in total
while true do
CL\.nrar p := € engduino — acceleration
| varx:=p-—xX
| vary:=p—y
| varz =p-—12%Z
| We assign 3 different variables to store our XY and Z values of the Engduino's Accelerometer
|var acceleration:=x*x+y*y+z*z
|acceleration := math — sqrt(acceleration)

In order to calculate the acceleration from the Engduino, we have to sum the square of x,y,z and square root
the summation

if acceleration = 1.1 then
|counter = counter + 1

| For us to register a step, we have to make sure the acceleration from the user is at least of acceleration 1.1

In order for us to know if a user has taken a step, we have to check if the acceleration of the user is
above 1.1g. If the acceleration is above 1.1g, we consider it as a step and we add the step to the
counter!

CREATING LED OUTPUT ACCORDING TO NO. OF STEPS TAKEN.

52| Page

R Pedometer create a new ..

7 script properties

publish
: : DaCT‘O” <::|cncktms
D> page()

arduino upload _serial monitor

add new action, event, ...
or event, variable, library reference, record
code 0 ¢

Click this
> main() @
@ an action
> setup()
@ an action
> variables()
@ an action

We will add a new action to show the output of the counter on the Engduino’'s LED

action private ac.tlon StepCounter ()
do nothing
dismiss StepCounte end action

v | private action <:I

Private actions do not get a run button.

ibrary
Hdata
@ picture resource

picture rom tne wep

€ sound resource

Bl O EE

™

run

)

‘atomic’ action more info

add input parameter <:|
create a new parameter

undo

®

add output parameter

create a new parameter

split

cut copy

delete

53| Page

We will rename our action to "StepCounter” and make it a private action and also add an input
parameter.

private action StepCounter (

step : Number)
do

forO<i<17do
ifi = 0 then
I +1
= '+ returns a 'Number’; insert 'post to wall' if you want to display it
else do nothing end if
¢» engduino — set LED(O, colors — black)

We rename our input parameter to "step” (This input will be the counter from the main function!) and
include a "for" loop with a range of 0 to 16 because we want to light up all 16 LEDs on the Engduino.

We also include a statement to make i=1 as the LED output starts from 1 and not 0.

private action StepCounter (

step : Number)
do

for O
if i

IA

i <17 do
0 then
i+ 1
*. '+' returns a 'Number'; insert 'post to wall' if you want to display it
else do nothing end if
¢» engduino — set LED(O, colors = black)
var count :=i* 20

if step > count then
¢ engduino — set LED(i, colors — green)
i+ 1
* '+' returns a 'Number'; insert 'post to wall' if you want to display it
Next, we create a new variable called 'count’ and initialize it to be the number of steps we want the

user to take so that a LED will light up. In this case, we want the user to walk 20 steps before lighting
one LED up.

In order for all 16 LEDs to be lighted up on the Engduino, the user has to walk :

54 | Page

16 * No. of steps you want the user to take*

So in the case of our code, the user has to walk 320 steps so that all the LED would light up.

*You can assign any value you want the user to walk before lighting up an LED!

private action StepCounter (

step : Number)
do
for0<i<1l7do
if i = 0 then
I+ 1
* '+' returns a 'Number’; insert 'post to wall' if you want to display it
else do nothing end if
~ € engduino — set LED(O, colors — black)
var count:=i* 20

if step > count then
4 & engduino — set LED(|, colors — green)
I+ 1
* '+' returns a 'Number'; insert 'post to wall' if you want to display it
if i = 16 then
- @ engduino — set all LEDs(colors — black)
- & engduino — delay(500)
~ @ engduino — set all LEDs(colors — green)
€ engduino — delay(500)
else do nothing end if
else do nothing end if
end for

end action beta 80345 © 2015 Microsofl

In the code above, we add a conditional statement to check if the user have completed the required
amount of steps to light up all the LED on the Engduino. If the user have completed the requirement,
the Engduino will start flashing to indicate that he/she is done.

55| Page

COMPLETING OUR PEDOMETER!

action main ()
g > setup
|var counter:=0

| We declare a counter variable to count the number of steps the user has taken in total
while true do

CLwar p := ¢ engduino — acceleration

|var X:=p—X

vary:.=p-y

varz:.=p-z

We assign 3 different variables to store our XY and 7 values of the Engduino's Accelerometer
var acceleration ;= x*x+y*y+z*z

acceleration := math — sqrt(acceleration)

In order to calculate the acceleration from the Engduino, we have to sum the square of x,y,z and square root
the summation

if acceleration > 1.1 then

|counter = counter + 1

| For us to register a step, we have to make sure the acceleration from the user is at least of acceleration 1.1
else do nothing end if

é [> StepCounter(counter)

| We create a new function to show the number of steps taken
end while

end action

In order to finish our Pedometer, we have to add the "StepCounter” function in our main function and
pass in the "counter” variable as the input parameter!

Final Product!

56 | Page

CHALLENGE PROBLEM

For every 4 completed sets of steps taken, the LED will light up from Red to Orange to Yellow and
lastly Green. The first 4 set of LED should be Red and once the user complete the 5th set, all the
lighted LED will change to Orange instead. The table below shows the full problem that you should
solve!

Challenge your friends to see who is able to solve this problem the fastest and show the result to your
teacher!

Steps taken LED color LED

(Steps needed for one set: 20)
0 - 4 * Steps needed 1,2,3,4

(0 - 80 steps)

5 * Steps needed - 8 * Steps Orange 1,2,3,4,5,6,7,8
Needed

(100 - 160 steps)

9 * Steps needed - 12 * Steps Yellow 1,2,3,4,5,6,7,8,9,10,11,12
needed

(180 steps - 240 steps)

13 * Steps needed - 16 * Steps Green 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
needed

(260 steps - 320 steps)
Above 16 * Steps needed Green All LED blinking
(Above 320 steps)

57| Page

REFERENCES

Full working code of tutorial : TouchDevelop Pedometer

TEACHER NOTES

UPLOADING TOUCHDEVELOP SCRIPT TO ENGDUINO (THROUGH SERIAL PORT)

The following instructions enable you to upload the TouchDevelop scripts onto the Engduino for

Windows device. In order to upload the scripts, make sure your Engduino is connected to your device

via USB.

1.

INSTALL PYTHON 2.7.9 -
HTTPS://WWW.PYTHON.ORG/DOWNLOADS/RELEASE/PYTHON-279/

Files

Version

Gzipped source tarball

XZ compressed source tarball

Mac OS X 32-bit i386/PPC installer

Mac 0S X 64-bit/32-bit installer

Windows debug information files

Windows debug information files for 64-bit binaries
Windows help file

Windows x86-64 MS| installer

Windows x86 MS| installer

Operating System Description

Source release
Source release
Mac0S X
Mac0S X
Windows
Windows
Windows
Windows

Windows

for Mac OS X 10.5 and later

for Mac OS X 10.6 and later

for AMD64/EME4T/x64, not Itanium processors.

Make sure you download the 2.7.9 version, as this is the specific version required for the
TouchDevelop to upload the scripts. Run the installer after the file has downloaded.

MD5 Sum
5eebcaa0030dc4061156d3429657fba3
38d530f7efc373d64a8fh1637e3baaaT
8d8a26fed767302ff38bc5056612c73a
307c2b99a212204¢7al182a354328¢94
c5838eclcdd529a7065902c7573d1607
544e1137e8ecdce4fdcd2954ea520fa7
dd438e999824c48001e54a2138¢4f455
21ee51a9f44b7160cb6fc68e29aldddo

3ed20d8b06dcd339f814b38861f88fc9

File Size

16657930
12164712
23759976
22006891
25969730
23979074
6120616

18833408

18309120

GPG

SIG

SIG

SIG

SIG

58 | Page

http://tdev.ly/ufoy
https://www.python.org/downloads/release/python-279/

2. INSTALL NODE.JS HTTPS://NODEJS.ORG/DOWNLOAD/

Download the appropriate installer and run the installer for node.js

|/
ag

Windows Installer

node-v0.12.1-x86.msi

Windows Installer (.msi)
Windows Binary (.exe)
Mac OS X Installer (.pkg)
Mac OS X Binaries (.tar.gz)
Linux Binaries (.tar.gz)
SunOS Binaries (.tar.gz)

Source Code

3. ADD PYTHON TO THE PATH VARIABLE

s

Macintosh Installer

node-v0.12.1.pkg

32-bit

32-bit

32-bit
32-bit

32-bit

= Go to Control Panel > All Control Panel

Items > System > Advances System
Settings

= |n the Advanced tab, click on
Environment Variables

= Select the PATH variable > Edit

Add ;C:\Python27;C:\Python27\Scripts; to
the existing Variable value.

Click OK to save the changes.

Source Code

node-v0.12.1.tar.gz

64-bit

64-bit
Universal

64-bit

64-bit

64-bit

node-v0.12.1.tar.gz

System Properties

| Computer Name | Hardware | Advanced |S)'stern Protection I F{emote|

Environment Variables

| Path |

| bR LR C 2 \Python 27 C \Python 27\Scripts |

Edit System Variable

Variable name:

Varizble value:

| oK | | Cancel |
| [L= L | | Cuit... | | [| I
System variables
Variable Value N
Path C:\ProgramData\OradeJava\javapath;...
PATHEXT .COM;.EXE;.BAT;.CMD;.VBS,.VBE;. I5;.....

PROCESS0OR_A...
PROCESSOR_ID...

AMDE4
Intel&4 Family & Model 69 Stepping 1, G... ¥

New.. | | Edt. || Delete |

| oK | | Cancel |

59 | Page

https://nodejs.org/download/

Save the file in a folder that you can easily find.

€« C' f £ https//bootstrap.pypa.io/g

1/usr/bin/env python

Hi There!
You may be 1
even be worr

dering what this giant blob of binary data here is, you might
d that we're up to something nefarious (good for you for being
parancid!). This is a bases4 encoding of a zip file, this zip file contains
an entire copy of pip.

Pip is a thing that installs packages, pip itself is a package that someone
might want to install, especially if they're lecking te run this get-pip.py
script. Pip has a lot of code to desl with the security of installing

packages, various edge cases on var platforms, and other such sort of
“tribal knowledge" that has been encoded in its code base. Be of this
we basically include an entire copy of pip inside this blob. We do this

because the alternatives are attempt to implement a “minipip" that probably
doesn't do things correctly and has weird edge cases, or compress pip itself Back
doun into a single file.

4F St 4 4 AE 4 AR 4 B 4 36 4 e e 4 e a4 b

If you're wondering how this is created, it is using an inveke task located Reload
in tasks/generate.py called "installer”. It can be invoked by using
invoke generate.installer . P Ciies

import os.path Print...
import pkgutil .
import shutil Transiate to English
import sys View page source
import struct
import tempfile View pa

Useful for very coarse version differentiation.
ion_info[@]
PY3 = sys.version_info[@]

ct element

iterbytes = iter

def iterbytes(buf):
return (ord(byte) for byte in buf)

try:
from base64 import bBsdecode
except ImportError:
_bsSalphabet = (b"@123456789ABCDEFGHIIKLHNOPQRSTUVHXYZ"
PO P

P R I -

O AT mm

Open node.js command prompt and go to the directory where you saved the file in step 4.

Type Python get-pip.py and press enter to run.

N Mode.js command prompt - ol

our environment has bheen set up for using MHode.js BA.12_8 <x64> and npn.

sxlzerssnijamu>Python get—pip-py_

In the command prompt type:
platformio - pip install platformio && pip install --egg scons

or just:

60| Page

https://bootstrap.pypa.io/get-pip.py

pip install platformio

snUzerssnijamu2pip install platformio && pip install —egg scons

Create a folder to save the files for TouchDevelop.

Navigate to the folder in node.js command prompt and type:

npm install -g

ssnUserssnijamurcd Desktop

sUzerssnijamusDesktopicd TD

sUserssnijamusDesktops\TD>npm install —g http:~ssaka.ms touchdevelop.tyg=

To run TouchDevelop local, type:

touchdevelop

ssUzerssnijamurcd Desktop

sUzerssnijamus~Desktop>cd TD

sUzerssnijanusDesktopsTD>touchdeve lop

The tutorials that we have included that uses the Engduino are using an Engduino emulator that is
included in the TouchDevelop system on the website. This is because there were some bugs when
uploading the code onto the Engduino, which meant that all the functions would not work properly.

The problems that came up are listed below:

1. Setting the LED’s individually

61 |

http://aka.ms/touchdevelop.tgz

We found that, although on TouchDevelop, using the emulator, we could set the LED’s
individually. However, when we uploaded the code onto the Engduino, an error came up
regarding ‘set_LED’.

0000.000> arduino: Oops, the sketch compilation failed. Please review the logs.

0000.001> shell: error: src.ino: In function 'void StepCounter(int)":

src.ino:46:36: error: 'set_LED' was not declared in this scope

scons: *** [pioenvs\myenv\src\src.o] Error 1

[ERROR] Took 1.20 seconds

0000.001> shell: [03/26/15 20:55:59] Processing myenv (platform: atmelavr, board: engduinov3, framework: arduino)

avr-g++ -0 .pioenvs\myenv\src\src.o -c -fno-exceptions -fno-threadsafe-statics -g -Os -Wall -ffunction-sections -fdata-
sections -MMD -mmcu=atmega32u4 -DF_CPU=8000000L -DUSB_VID=0x1B4F -DUSB_PID=0x9208 -
DUSB_PRODUCT=\"EngduinoV3\" -DARDUINO=10601 -DPLATFORMIO=010200 -ILpioenvs\myenv\Wire\utility -
Lpioenvs\myenv\Wire -Lpioenvs\myenv\EngduinoLEDs -Lpioenvs\myenv\SPI -Lpioenvs\myenv\EngduinoButton -
Lpioenvs\myenv\EngduinoAccelerometer -L.pioenvs\myenv\EngduinoThermistor -Lpioenvs\myenv\EngduinoTD -
Lpioenvs\myenv\FrameworkArduino -I.pioenvs\myenv\FrameworkArduinoVariant .pioenvs\myenv\src\src.cpp
0000.002> shell: shell 1

0000.002> exited with 1

0000.025> [ERROR] Took 1.20 seconds

0000.058> scons: *** [.pioenvs\myenv\src\src.o] Error 1

0000.064> src.ino:46:36: error: 'set_LED" was not declared in this scope

2. TouchDevelop only uses ‘int’ values

As our topic was ‘acceleration’, we wanted to use the accelerometer in our tutorials. These
values should be stored as ‘double’ in C++. However TouchDevelop uploads the value as ‘int’
onto the Engduino.

EngduinoLEDs.begin();
EngduinoAccelerometer.begin();
EngduinoButton.begin();
EngduinoThermistor.begin();
EngduinoTD.begin();

}

void loop()
{
int totalSteps = 0;
TD_Vector3 p = TDLIB_Engduino:acceleration();
intx = p.x();
inty = p.y(
intz = p.z();
int steps = ((x*X)+(y*y))+(z*2));
steps = sqrt(steps);
if ((steps>=1.1)) {
totalSteps = (totalSteps+1);
}

3. The emulator that is on the TouchDevelop system is based on the Engduino v2 (green), whereas
we use the Engduino v3 (white). There are small differences between the two models, for
example the labeling of the LED’s and so take note which version of the Engduino is being used.

62| Page

NOW YOU’RE GOOD TO GO! ©

63| Page

