
 1

NHS Chatbot Generation Service Manual

COMP0016 2022/2023 Team 12

NHS Auto-chatbot

 2

NHS Chatbot Generation Service Manual

Index

NHS Chatbot Generation Service Manual .. 2

Index ... 2

Our websites .. 3

Overview .. 4

Why use our service? ... 4

How to use our service? ... 4

Limitations of our service ... 4

How to Generate a Chatbot .. 5

Prerequisites .. 5

Steps for Generating the Chatbot .. 6

Steps for Embedding the Chatbot to Your Website .. 7

Improve Your Chatbot Conversations .. 8

Monitor Conversations ... 8

Edit Conversations ... 9

Deploy the Chatbot Generation Service ... 10

Deploy Locally .. 10

Deploy on Server .. 11

Environment Variables ... 12

Django Backend (env.py) ... 12

React.js Frontend (env.js) .. 14

Azure functions .. 17

Cost Estimation .. 18

Documentation for API calls .. 19

/url_list .. 19

/generate_json_e ... 20

/register_url ... 20

/get_json ... 21

/del_json ... 21

 3

Our websites

Generation Service Demo: http://nhschatbotgenerator.uksouth.cloudapp.azure.com:3000

Portfolio: https://students.cs.ucl.ac.uk/2022/group12/index.html

Frontend Source Code: https://github.com/Zhiyu-Wang-2021/chatbot-view

Backend Source Code: https://github.com/Zhiyu-Wang-2021/chatbot-generator

Azure Functions Source Code: https://github.com/Zhiyu-Wang-2021/BingAccessForWatson

http://nhschatbotgenerator.uksouth.cloudapp.azure.com:3000/
https://students.cs.ucl.ac.uk/2022/group12/index.html
https://github.com/Zhiyu-Wang-2021/chatbot-view
https://github.com/Zhiyu-Wang-2021/chatbot-generator
https://github.com/Zhiyu-Wang-2021/BingAccessForWatson

 4

Overview

Why use our service?

NHS trusts and clinics often have the essentials in their services mapped online. Some small trusts

and clinics even do not have many IT people in their organisations. If they want to create a chatbot

for each trust and clinic from scratch, they need to hire IT people that have advanced skills to

develop and maintain it. Moreover, the cost of creating the chatbot can be very expensive as it

needs more people and a lot of time to develop. In addition, most people nowadays prefer

consulting medical questions from their phones rather than going to the hospital or clinic. Therefore,

some NHS trusts and clinics need to have their chatbot.

Our goal for this project is to support all NHS trusts and clinics to create a low-cost (approximately

140-200£/month) chatbot easily without hiring many IT people. To help them reduce the cost and

time of developing a chatbot from scratch, we build a chatbot generation service that can create a

chatbot for any NHS trust’s websites, the so-called NHSBot. There are multiple layers of technology

stack behind this service so that the user can get the best possible answer. The predefined questions

will get the answer from our web scraping tool, and other general questions will retrieve from Bing

API. Our generation service is quick, adaptable, user-friendly, and maintainable. Every trust and clinic

only needs 20-30 minutes to create a chatbot with 3 simple steps, and they can implement it into

their website. In the future, they can also improve and maintain it by modifying the chatbot

dialogue.

How to use our service?

You can try this demo NHS Chatbot Generation Service or deploy your own NHS Chatbot Generation

Service by following the instructions in the “Deploy This Service” section. After opening the service,

follow the instructions in the “How to Generate a Chatbot” section to generate your bot.

Limitations of our service

All the information your chatbot knows comes from your website, so it cannot answer information

that is not on your website. For example, if your website does not have information on opening

hours, your chatbot cannot answer the corresponding questions. But you can easily edit the

dialogue manually to include more information. (See Improve Your Chatbot Conversations).
Rather than generating a chatbot that can be immediately deployed to a website, we generate a

JSON file that can create an IBM Watson Assistant chatbot. Therefore, you will need to manually

upload the Dialog JSON file to your IBM Watson Assistant instance after generating it in our

Chatbot Generation Service. However, the uploading process should only take you less than 10

minutes.

http://nhschatbotgenerator.uksouth.cloudapp.azure.com:3000/

 5

How to Generate a Chatbot

Prerequisites

Estimated time: 10 min. (These prerequisites are only required for deploying your chatbot on your

website. You will not need them for trying our chatbot generation service demo.)

Since our chatbot generation service is based on IBM Watson Assistant, you will need to have 1) an

IBM Cloud Account, and 2) an IBM Watson Assistant instance.

You can create an account here: https://www.ibm.com/cloud. After logging in, you can search for

the Watson Assistant resource and create your instance.

If you have created your Watson Assistant successfully, you can find it in your resource list. Launch it

once you find it. Lastly, please activate the Dialog feature of your Watson Assistant.

https://www.ibm.com/cloud

 6

Steps for Generating the Chatbot

Estimated time: 20 min.

Step 1: Upload the link to your trust's official website to this service, giving you a unique reference

code corresponding to your chatbot.

Step 2: Wait for our information extraction system to retrieve key information from your website.

Step 3: Once a success message is displayed, you can use the unique reference code you have just

obtained to download your chatbot's Dialog JSON file. (The reference code can also be found in the

Generation History.) Before embedding your chatbot to your website, you can try your chatbot

directly on this page by clicking the “PREVIEW” button.

 7

Steps for Embedding the Chatbot to Your Website

Estimated time: 10 min.

Step 1: You can upload the Dialog JSON file you get from our service to your IBM Watson Assistant

as shown in the image. When the Dialog JSON file is uploaded, you can try it by clicking the play

button, which is in the Preview section.

Step 2: To embed your IBM Watson Assistant to your webpage, you only need to find this prewritten

code in your Watson Assistant management page and paste this code to your website.

 8

Improve Your Chatbot Conversations

Because the information gathered by your chatbot comes from your trust’s website, there are bound

to be questions from patients that cannot be answered effectively. But with Watson Assistant, you

can efficiently monitor conversations and improve them. (No programming required.)

Monitor Conversations

You can monitor conversations by following the steps illustrated below. Here you can see the logs of

each conversation.

And by clicking one of the conversations, you can see the full conversation history that includes your

chatbot’s responses. The ‘Unrecognized’ sign means that your chatbot will call a webhook to search

 9

over your website immediately and reply with a reasonable answer.

Edit Conversations

If your chatbot answers a question incorrectly or fails to answer it, you can add or delete the

generated conversation rules here.

 10

Deploy the Chatbot Generation Service

Recommend configuration: Python 3.8.10, PIP 20.0.2, Node 18.13.0, NPM 8.19.3

Deploy Locally

Django Backend

Step 1: Clone the backend code from GitHub.

git clone git@github.com:Zhiyu-Wang-2021/chatbot-generator.git

Step 2: Create a Python virtual environment.

python3 -m venv venv

Step 3: Activate your new virtual environment.

Mac/Linux:

source ./venv/bin/activate

Windows:

source ./venv/Scripts/activate

Step 4: Install dependencies in this virtual environment.

pip install -r requirements.txt

Step 5: Run the backend.

python3 ./chatbotSite/manage.py runserver --nothreading --noreload

React.js Frontend

Step 1: Clone the frontend code from GitHub.

git clone git@github.com:Zhiyu-Wang-2021/chatbot-view.git

Step 2: Install dependencies.

npm install

Step 3: Run the frontend service.

npm start

 11

Deploy on Server

Recommend configuration: Linux (Ubuntu 20.04), 1 CPU, 2 GB memory.

Django Backend

Steps 1-4: The same as the Step 1-4 of local deployment.

Step 5: Run the backend.

nohup python3 ./chatbotSite/manage.py runserver 0.0.0.0:8000 --nothreading

--noreload &

To stop running the backend service, use the following command to find the <process_id> of the

backend service process and stop the process.

sudo kill $(lsof -t -i:8000)

*If the above command failed, add the ‘-9’ parameter for force stop.

sudo kill -9 $(lsof -t -i:8000)

To check the logs via:

tail nohup.out

React.js Frontend

Steps 1-2: The same as Steps 1-2 of local deployment.

Step 3: Install the ‘pm2’ package globally using NPM. (No need for this step if ‘pm2’ is already

installed.)

npm install pm2 -g

Step 4: Run the frontend service.

pm2 start npm -- start

To stop running the frontend service, use the following command to find the <process_id> first.

pm2 ps

Then terminate this process.

pm2 stop <process_id>

 12

Environment Variables

Django Backend (env.py)

MONGODB_URL =

"mongodb://nhschatbotdb:fR3tHFqVSCFauKgWvMiigj3nNYi67yfXKvahPKekoUdXVT88HgP

vlnqL4FY2875XLn6TsijMyXqgACDbeaftmQ==@nhschatbotdb.mongo.cosmos.azure.com:1

0255/?ssl=true&retrywrites=false&replicaSet=globaldb&maxIdleTimeMS=120000&a

ppName=@nhschatbotdb@"

BING_AZURE_FUNC_URL =

"https://bingaccessforwatson.azurewebsites.net/api/useQnA2ImproveAnswer?cod

e=41mEZaj2kjJphYWmK6eHPFzQwQHLiVyW61QpEvrpGUcbAzFuAwDC3w=="

BING_API_KEY = "ef99b91a0209431cb66dd4d32a0b20c6"

IBM_NLU_URL = 'https://api.us-south.natural-language-

understanding.watson.cloud.ibm.com/instances/2019387f-a518-46b0-aa72-

ccc03cdf67c8'

IBM_NLU_API_KEY = 'Iig5IogwUhp2dIo1FqAUEjkka7OoC42qXbWHWucIU9oU'

This is the sample env.py file from our demo. You can change them to use your own IBM Cloud, MS

Azure cloud, and MongoDB service. The following is the explanation for each of the variables:

MONGODB_URL

The URL of your MongoDB database.

BING_AZURE_FUNC_URL

The URL of your “useQnA2ImproveAnswer” Azure Function. To learn more about the Azure

functions we use, see the “Azure Functions” section.

BING_API_KEY

The API key of your Bing API.

 13

IBM_NLU_URL

The URL of your IBM Natural Language Understanding service.

IBM_NLU_API_KEY

The API key of your IBM Natural Language Understanding service.

 14

React.js Frontend (env.js)

export const iamKey = "fK1ry7X3D0HFVHC_kJXKlLA6900sxeHH6Yc0MKtEdGHm"

export const instanceId = "d049a552-ee69-4a04-aa9b-1fa4e7994ece"

export const backendBaseUrl = http://127.0.0.1:8000/

export const bingApiConnections = {

 getBearerToken:

'https://bingaccessforwatson.azurewebsites.net/api/getIAMBearerToken?code=G

5Im9OxAR8gYcw8MXCMslqQPQXrIfvQnrXWYR3H1l52TAzFuJ6xz9g%3D%3D',

 sendMsgToWatsonAssistant:

'https://bingaccessforwatson.azurewebsites.net/api/sendMsgToWtsnAssistant?c

ode=bbQ1-v-eerh6tNjMAQ_uVzIYi6Kp4fst5pt-Z4SSv4BdAzFu5162rQ%3D%3D',

 getWorkspaceList:

'https://bingaccessforwatson.azurewebsites.net/api/workspaceMgmt4WtsnAssist

ant?code=XEs8yTiSgUNtA3B0pmHSuEasXN9Gp7MXHSHP2s9wLo80AzFuWfIZpg%3D%3D',

 newWorkspace:

'https://bingaccessforwatson.azurewebsites.net/api/newWorksapce4WA?code=64J

QYzH544yWpZis1C7oA-vWBJydk43qJCq4DnUEzOiJAzFukK8QFw%3D%3D',

 delWorkspaceById:

'https://bingaccessforwatson.azurewebsites.net/api/delWorkspace4WAbyID?code

=EWv9dpPsZAMxh0ATFHdjYBBCHeS7mSL73fq81x0sRlalAzFutnXGxw%3D%3D',

}

This is the sample env.js file from our demo. You can change them to use your own Watson Assistant

instance and Django backend service. The following is the explanation for each of the variables:

iamKey

This is the key to accessing IBM Cloud API. You can generate this key in IBM Cloud by these steps:

http://127.0.0.1:8000/

 15

instanceId

backendBaseUrl

This is the base URL to your Django backend; it depends on where you deploy your backend service.

It should be "http://127.0.0.1:8000/" by default for a locally run backend.

 16

bingApiConnections

This is an object that stores the URLs to corresponding Azure Functions. To learn more about the

Azure Functions we use, see the Azure Functions section and this GitHub page for the source codes.

To learn more about the Azure functions we use, see the “Azure Functions” section.

https://github.com/Zhiyu-Wang-2021/BingAccessForWatson

 17

Azure functions

We are using Azure functions to allow our chatbot generation service to communicate with Watson

Assistant API and allow Watson Assistant to call Bing API. You can deploy all the Azure Function on

your Azure platform and replace the Azure Function URLs in the environment variables. Here is the

link to the GitHub repository of all the Azure functions. They are all designed to be called internally

in the chatbot generation service and you should avoid calling them outside of the service.

You can get the URL to an Azure Function as shown in the image below:

Here is the explanation of the Azure Functions we have used in our service.

getIAMBearerToken:
This is for getting the Bearer token by your IBM Cloud IAM key. The Bearer token is used for

communicating with Watson Assistant API.

sendMsgToWtsnAssistant:
This is for sending your message to Watson Assistant and getting a response.

workspaceMgmt4WtsnAssistant:
This is for getting the Watson Assistant workspace list.

newWorkspace4WA:
This is for creating a new Watson Assistant workspace.

delWorkspace4WAbyID:
This is for deleting all the Watson Assistant workspaces.

useQnA2ImproveAnswer:
This is the webhook that Watson Assistant will call when it cannot answer the question based on our

web scraping information. This webhook will call Bing API and Azure Language Service to provide the

user with a reasonable response.

bingAccessWebHook:
This is the webhook for accessing Bing API without using Azure Language Service to improve the

answer. It is solely based on the Bing search engine. This webhook will be automatically called by the

“useQnA2ImproveAnswer” function.

https://github.com/Zhiyu-Wang-2021/BingAccessForWatson
https://github.com/Zhiyu-Wang-2021/BingAccessForWatson/tree/master/useQnA2ImproveAnswer
https://github.com/Zhiyu-Wang-2021/BingAccessForWatson/tree/master/bingAccessWebHook

 18

Cost Estimation

The following table shows a sample cost estimation based on Great Ormond Street Hospital’s data.

GOSH receives 280,000 patients annually, and we can assume that 1 out of 20 patients will use a

chatbot on GOSH’s website. In such a case, there should roughly be 1,200 monthly active users and

4,000 questions being asked monthly.

Service Name Functionality Service Tier Cost (£/month)

IBM Watson Assistant Deploy chatbot on the web Plus 168

IBM Natural Language
Understanding

Information retrieving (only
used during the chatbot
generation phase)

Free 0

Bing Search API Answer general questions S2 12

Azure Language
Service

Improve answers from Bing API S 5

Azure Functions Connect our service, Bing API,
and Watson Assistant

Consumption
(Total Executions)

0

Total 185

Sources:

IBM Watson Assistant - Pricing

IBM Natural Language Understanding - Pricing

Bing Search API Pricing | Microsoft Bing

Pricing - Language Service | Microsoft Azure

Pricing - Functions | Microsoft Azure

https://www.ibm.com/products/watson-assistant/pricing
https://cloud.ibm.com/docs/natural-language-understanding?topic=natural-language-understanding-pricing#:~:text=Pricing%20%28billed%20monthly%29%20Tier%201%3A%20%240.003%2FNLU%20item%20for,%240.001%2FNLU%20item%20for%20250%2C001%20to%205%2C000%2C000%20NLU%20items
https://www.microsoft.com/en-us/bing/apis/pricing
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/language-service/
https://azure.microsoft.com/en-us/pricing/details/functions/

 19

Documentation for API calls

By looking at this guide you can see how to use our chatbot generation only by the Django API and

without using the react front-end part. Typically, you will call the API in this sequence to generate a

JSON file for your chatbot: “/register_url” -> “/generate_json_e” -> “/get_json”.

/url_list

Description: List all the URLs and corresponding dialogue reference codes. The dialogue reference

code is the Object ID generated by MongoDB automatically.

Type: GET

Sample Response: application/json

[

 {

 "_id": {

 "$oid": <String of this object’s Object ID>

 },

 "dialog_ref": {

 "$oid": <String of the dialogue object’s Object ID>

 },

 "url": <String of your website URL>

 }, …

]

 20

/generate_json_e

Description: Generate a dialogue JSON from an existing dialogue JSON template. You need to call

/register_url/ first to register your URL in the database and get the dialogue reference code. After

getting the “success” response, you can get your chatbot from the database by the dialogue

reference code.

Type: POST

Body: application/json

{

 "ref": <String of the dialogue object’s Object ID>,

 "url": <String of your website URL>

}

Sample Response: text/html; charset=utf-8

“success”

/register_url

Description: Register your URL in the database and get the dialogue reference code.

Type: POST

Body: application/json

 {

 "url": <String of your website URL>

 }

Sample Response: text/html; charset=utf-8

<String of the dialogue object’s Object ID>

 21

/get_json

Description: Get a dialogue JSON file by its Object ID. You can upload the dialogue JSON to Watson

Assistant to deploy your chatbot.

Type: GET

URL Params:

“id”: <String of the dialogue object’s Object ID>

Sample Response: application/json

<JSON of this dialogue>

/del_json

Description: Delete all the dialogue JSONs and registered URLs in the database.

Type: DELETE

Sample Response: text/html; charset=utf-8

"deleted <the total amount of deleted JSONs> JSONs."

