
MotionInput Deployment Manual

Michal Bravansky Shu Han Ho Dexin Fu
Seojeong Hong

General Deployment

The MotionInput application can be executed through a standalone executable
file. First, start by cloning the repository:

git clone https://github.com/MotionInput/MI_3.4.git

Make sure you have installed all dependencies:

pip install -r requirements.txt

Users are afforded the convenience of directly running the application via an
.exe file. This executable can be generated by executing the following command
within the main directory of the repository:

python build.py motioninput.py

Upon the execution of the generated .exe file, the MotionInput applica-
tion initializes, adopting the configurations specified within the config.json

file. This configuration file is designed to be user-editable, thereby allowing for
customization according to user preferences.

To evaluate the functionalities of the MotionInput v3.4, users are encouraged
to modify the config.json file to select from the available game modes.

Migrated Features Deployment

Users are adviced to evaluate the migrated features and functionalities by switch-
ing among the 20 models that have been successfully migrated to the current
version. These models are listed in Table 1 below. Detailed descriptions and
operational guidelines for each model can be found in the User Manual.

1



Game Mode File Name
Zoomevent Zoomevent.json
Samurai swipe event Samurai swipe event.json
Gun move event Gun move event.json
Head Head.json
Mr swipe event Mr swipe event.json
Nose tracking event Nose tracking event.json
Force field event Force field event.json
Nose scroll event Nose scroll event.json
Spiderman thwip Spiderman thwip.json
Pitch click Pitch click.json
Head trigger Head trigger.json
Nosebox display Nosebox display.json
Face display Face display.json
Display element Display element.json
Circle trigger Circle trigger.json
Body points Body points.json
Sound pose Sound pose.json
Mr swipe Mr swipe.json
Brick ball Brick ball.json
Gun move Gun move.json

Table 1: Migrated Game Modes and Their Respected File Names

Python Package Deployment

First, we need to clone the MotionInput repository:

git clone https://github.com/MotionInput/MI_3.4.git

Next, install the MotionInput package. This command checks for all depen-
dencies before compiling the MotionInput repository into the data/api folder
and installing that folder as a package:

pip install .

Afterwards, you can create a new Python .py file to interact with the Mo-
tionInput API through the motioninput api package. However, make sure to
copy the data folder to the same directory before executing the following code:

from motioninput_api import MotionInputAPI

MotionInputAPI.start()

MotionInputAPI.run()

2



Figure 1: Example Setup for the MotionInput Python Package

DLL Deployment

If you have access to the submitted .zip file, you are already equipped to begin
with the MotionInput Dynamic Link Library. Everything you need to utilize it
is present in the example folders.

To specifically run the DLL, first unzip DLL.zip. As this folder needs to
contain everything a developer might need, it can take couple of minutes. Then
copy and paste the data folder from the main DLL folder into the Release
directory of any of the example applications, following the path:

example/app/MotionInputConsole/bin/Release/net8.0. There, you will
need to include the data folder and start the provided console application.

In the event that you do not have access to the submitted materials, you
can set up the DLL by adhering to the instructions outlined below.

0.1 DLL Setup From Git Repository

This section outlines the procedure for setting up the DLL on your machine.
Start by cloning the DLL repository using the command:

git clone https://github.com/MotionInput/MI_DLL.git

Next, obtain the embedded Python package, preferably version 3.12, from
Python’s official website1. After downloading, install it in the MI DLL directory.

Following the installation, open a terminal in the MI DLL folder and install
all necessary packages with the command below:

1https://www.python.org/downloads/release/python-3120/

3

https://www.python.org/downloads/release/python-3120/


python -m pip install -r paths/to/motioninput/requirements.txt

Should you encounter any issues with the gamepad driver, it is recommended
to download the additional Windows extension2. In case of problems with the
cv2 package, ensure to copy the python3.dll file into the cv2 directory located
within lib/site-packages.

Furthermore, transfer the ”data” folder from MotionInput into the direc-
tory "example/c#/MotionInputConsole/bin/Release/net8.0". Also, ensure
to move the Python interpreter into:

"example/c#/MotionInputConsole/bin/Release/net8.0/data/python".
To conclude, you may either directly execute the MotionInputConsole.exe

located in the Debug folder or open and build + run the project in Visual Studio.

Figure 2: DLL and Console Application Directory Structure

2https://ds4-windows.com/download/vigembus-driver/

4

https://ds4-windows.com/download/vigembus-driver/


Figure 3: Embedded Python Directory Structure

5


	DLL Setup From Git Repository

