
User Manual.md 2025-03-24

1 / 19

User Manual - UnitPylot

Table of Contents

�. Introduction

�. Getting Started

�. Overview of Features

�. Usage

�. Troubleshooting

�. Contact Information 

1. Introduction

Welcome to the User Manual for UnitPylot! This guide will help you understand how to use and get the

most out of our extension. 

2. Getting Started

2.1 Prerequisites

Access to Copilot: To use any GitHub Copilot extension in Visual Studio Code, you need either an

active Copilot subscription (such as Copilot Pro, Copilot Enterprise, or Copilot Business)

Visual Studio Code should be installed

Copilot in Visual Studio Code: Follow this if not yet set-up -

http://code.visualstudio.com/docs/copilot/setup

2.2 Installation and Launching the Extension

�. Make sure you have the GitHub Copilot activated in VS Code. Follow the link above if you need

assisstance.

�. Add our extension by searching for "UnitPylot"  in the VS Code Extension Marketplace.

�. Download an example codebase to try out our extension from here: https://github.com/ucl-syseng-

tools-for-vscode/example-codebases

To begin using UnitPylot, follow these steps:

�. Press F5 OR open the Command Palette (Shift + Command + P) and run Debug:  Start

Debugging.

�. Open one of the projects within the example-codebases folder.

�. Run the make.sh file to create a virtual environment (venv) to run the project within OR ensure that

you have the necessary dependencies installed by running: pip install pytest pytest-cov
pytest-json-report pytest-monitor.

For further instuctions, please follow our installation procedure listed in our README.md.



User Manual.md 2025-03-24

2 / 19

3. Overview of our Features 🌟

📊  Test Performance & Coverage Insights

Granular Test Metrics Breakdown: displays the structure of the project's test suite within a tree

view highlighting,

passing/failing test cases,

n slowest tests,

n most memory intensive tests.

Line and Branch Coverage Display: provides functionality that highlights untested areas of code

within the editor, providing real-time feedback.

Test History Tracker: tracks test performance with interactive graphs of pass/fail rates and coverage

trends.

Exportable Logs: saves test results and coverage trends into json or markdown formats.

🔁  Automated Test Optimisation & Debugging

UnitPylot offers AI assitance that provides suggestions to improve the following metrics, allowing them to

be accepted directly into corresponding files:

Fix Failing Tests: detects failure points and suggests fixes to improve test reliability.

Improve Coverage: detects untested code such as edge cases or missed branches and suggests

additional test cases.

Optimise Slowest Tests: detects the n slowest tests and suggests explanations and improved test

cases with faster execution time.

Optimise Memory-intensive Tests: detects the n most memory intensive tests and suggests tests

which use lesser memory.

🤖  AI-Powered Enhancements

Code Insights: highlights vulnerabilities and suggests improvements in test cases to detect

bottlenecks and prevent regressions.

Pydoc Generation: generates documentation for test cases to enhance readability and

maintainability.

AAA Chat Participant: provides guidance on how to follow the best testing practices by adhering to

the AAA design pattern.

⚙  Smart Execution and Customisation

Customise n: allows user to chose the number of slowest and memory intensive tests to display

dynamically.

Continuous Background Testing: runs necessary tests automatically when changes are detected.

Refreshing Suite History: allows user to customise whether to periodically save snapshots or

track changes based on file changes.

Selective Test Execution: allows running only relevant tests based on recent changes to shorten

feedback loops.



User Manual.md 2025-03-24

3 / 19

4. Usage

4.1 Usage Instructions 📖

🖥  Dashboard View

Locate and open the 🔧  icon on the left-side VSCode navigation bar. 

Access the granular test suite view from the dashboard view under the Tests Overview collapsable

view.

When you click on a test case, you are automatically navigated to the relevant code for that

test. 



User Manual.md 2025-03-24

4 / 19

Access the test history graphs to analyse the pass/fail rates and coverage trends over time from the

dashboard view under the Graphs & Docs collapsable view.

�. First press the relevant graph button on the Dashboard 

�. A new window will automatically open up, displaying the relevant graph. Use the previous or next

buttons to move through the graph display over time. By hovering over a particular point in time, you

will see further information, such as the timestamp and number of test cases or covered

lies/branches.



User Manual.md 2025-03-24

5 / 19

Example of the Pass/Fail Graph

Example of the Coverage Graph



User Manual.md 2025-03-24

6 / 19

Hover over a data point to see more information!

⏯  Running Tests

�. Open a Python file with tests.

�. Use the CodeLens links above each test function to run or debug particular tests OR click the run

tests / run all tests button within the dashboard view. 

📈  Viewing Test Coverage

�. Enable code coverage highlighting in the settings.

�. Run your tests to see the coverage data directly in the editor. 



User Manual.md 2025-03-24

7 / 19

Example of coverage in-line highlighting within the editor

✅  Commands for Optimising Tests

Code Insights

�. Locate the Code Insights button on the top right next to the run button to generate code insights. 



User Manual.md 2025-03-24

8 / 19

�. Hover over the annotation to view each insight! Annotations automatically disappear once you leave

the file.  

UnitPylot Commands

Right click and navigate to the UnitPylot Commands sub-menu to find:

the fix coverage command when in a source file.

the fix failing, optimise slowest, optimise memory, and generate pydoc commands when the

current editor is in a test file.

�. First open the sub-menu by right-clicking anywhere in the editor.



User Manual.md 2025-03-24

9 / 19

Accessing the command via the submenu (In this example, the `Fix Failing` command is

executed)

2. The relevant test case will then be annotated.

Suggestion is being displayed in-line

3. Hover over the annotation to see a pop-up with the option to accept or reject the suggestion.



User Manual.md 2025-03-24

10 / 19

Viewing the suggestion

4. If accepted, the suggestion will be applied to the relevant file. View the file and refactor code if

necessary. If rejected, the annotation disappears.

Accepting the suggestion



User Manual.md 2025-03-24

11 / 19

Refactor code as needed

Updated Dashboard

AAA Chat Participant

The Chat Participant can be accessed by clicking on the button as shown below. You much search for

@UnitPylot-AAA-Assistant to use it.



User Manual.md 2025-03-24

12 / 19

Interacting with the Participant

Example response



User Manual.md 2025-03-24

13 / 19

📄  Generating a Report

�. First click on the Generate report button. 

�. Then specify the name, where you want to save the report and its format(JSON or Markdown). 



User Manual.md 2025-03-24

14 / 19

�. Upon success, a message will notify the report has been generated and saved! 

⚙  Settings Page

Clicking on the settings icon allows you to open the settings page.

Here you can change the number of slowest tests and memory intensive tests to be displayed on the

Dashboard, along with how the dashboard metrics are saved. (i.e. every time you save the file, or every x

amount of minutes.)



User Manual.md 2025-03-24

15 / 19

Settings page

Settings page continued

Information Icons

Hover over the tooltips triggers for more information on each feature.



User Manual.md 2025-03-24

16 / 19

Click on a information tooltip

A pop-up will appear for key information about the feature

A Note on the Commands

All commands are also accessible from the Command Palette! Simply type >UnitPylot and they should

all be listed!



User Manual.md 2025-03-24

17 / 19

Custom,  Third-Party LLM Support

This extension should be used with GitHub Copilot, as this provides the best user experience for the

developer. However there is the option to use a Third-party or Local LLM if the user wishes.

UnitPylot supports custom large language models (LLMs) through an OpenAI-style API. This allows you to

integrate your own LLMs for test writing and optimisation.

To configure a custom LLM, set the following options in the VSCode settings:

unit-pylot.customLLM Endpoint: The endpoint URL for your custom LLM API (e.g.,

http://xxxxxx/v1/chat/completions).
unit-pylot.customLLM Model: The model name to use with your custom LLM.

unit-pylot.customLLM APIKey: The API key for authenticating with your custom LLM.

unit-pylot.customLLM MaxTokens: The maximum number of tokens to use for each request to

your custom LLM.

Please note:  The extension has not been designed with this in mind and we strongly discourage this

mode of use as the accuracy of results for the optimisations will be impacted.  



User Manual.md 2025-03-24

18 / 19

5. Troubleshooting

5.1 Common Issues

If there is an issue in downloading the extension from the Visual Studio Code Marketplace, then you

can also access it locally. Further instructions are included in the README.md.

When building the extension from source and running via vscode, you may encounter error messages

like these. This is because our extension deletes temporary files generated by pytest which may

throw an error in other extensions. 

The example above shows an error message from the GitHub copilot chat extension but this can be

ignored.

Sometimes the UnitPylot: Optimise Memory Usage of Tests command may not optimise all

test cases in the file, and only the most intensive one. This is because memory allocations fluctuate

each time tests are run in the background. Please re-run the tests then run the command again.



User Manual.md 2025-03-24

19 / 19

6. Contact Information

For any questions, feedback, or support, feel free to reach out to the UnitPylot team:

Aaditya Kumar: aaditya.kumar.23@ucl.ac.uk, aadityastyles@gmail.com

Asmita Anand: asmita.anand.23@ucl.ac.uk, asmitaanand04@gmail.com

Gughan Ramakrishnan: gughan.sowndravalli.23@ucl.ac.uk, rs.gughan@gmail.com

Swasti Jain: swasti.jain.23@ucl.ac.uk, swasjn4@gmail.com

mailto:aaditya.kumar.23@ucl.ac.uk
mailto:aadityastyles@gmail.com
mailto:asmita.anand.23@ucl.ac.uk
mailto:asmitaanand04@gmail.com
mailto:gughan.sowndravalli.23@ucl.ac.uk
mailto:rs.gughan@gmail.com
mailto:swasti.jain.23@ucl.ac.uk
mailto:swasjn4@gmail.com

